DOI QR코드

DOI QR Code

Effect of Support Surface and Visual Condition on Static Balance

안정 및 불안정 지지면에서 시각 조건이 정적 균형에 미치는 영향

  • Noh, Su-Hyun (Department of Physical Therapy, Sunmoon University) ;
  • park, Eun-Jung (Department of Physical Therapy, Sunmoon University) ;
  • Hong, Ji-Heon (Department of Physical Therapy, Sunmoon University) ;
  • Yu, Jae-Ho (Department of Physical Therapy, Sunmoon University) ;
  • Kim, Jin-Seop (Department of Physical Therapy, Sunmoon University) ;
  • Lee, Dong-Yeop (Department of Physical Therapy, Sunmoon University)
  • 노수현 (선문대학교 물리치료학과) ;
  • 박은정 (선문대학교 물리치료학과) ;
  • 홍지헌 (선문대학교 물리치료학과) ;
  • 유재호 (선문대학교 물리치료학과) ;
  • 김진섭 (선문대학교 물리치료학과) ;
  • 이동엽 (선문대학교 물리치료학과)
  • Received : 2019.05.31
  • Accepted : 2019.07.20
  • Published : 2019.07.28

Abstract

The purpose of this study was to investigate the effect of visual conditions on the static balance of stable and unstable surfaces. Thirty healthy adults participated in this study (13 men, 17 women). Visual conditions were set as vertical, horizontal, and diagonal. It was performed on the pad to measure the balance on the unstable support surface. Using the balance measuring instrument, the General Stability Index, Weight Distribution Index, and Weight Distribution was measured. Paired t-tests were used for ground-based comparisons and one-way ANOVAs were used for comparisons within the same ground. The general stability index showed a significant difference according to the horizontal and vertical line directions on the stable support surface(p<.05). According to the comparison between the grounds, the weight distribution index on the unstable support surface showed a significant difference(p<.05). Weight distribution showed significant differences between the left and right eyes on the support surface with the stable and the unstable horizontal visual condition(p<.05). In static balance training, vertical and diagonal visual direction conditions are predicted to be helpful for training.

본 연구의 목적은 안정한 지지면, 불안정한 지지면에서 시각 조건이 균형에 미치는 영향에 대해 알아보고자 하였다. 건강한 성인 30명이 본 연구에 참여하였다. 시각 조건은 수직, 수평, 대각선으로 설정하였고 불안정한 지지면에서의 균형 측정을 위해 패드를 밟고 측정을 수행하였다. 균형측정기를 통해 안정성 지수(General Stability Index)와 체중 분포 지수(Weight Distribution Index), 체중 분포도(Weight Distribution)를 측정하였다. 지면 간 비교는 대응 표본 t검정을 하였고, 지면 내 비교는 일원배치분산분석을 사용하였다. 불안정한 지지면에서 시각 조건 내 (수평, 수직)의 안정성지수는 유의한 차이를 보였고(p<.05), 지면간의 비교에서 체중분포지수에서 유의한 차이가 있었다(p<.05). 체중분포도는 수평 방향의 시각의 모든 지지면에서 왼쪽과 오른쪽 사이의 유의한 차이가 나타났다(p<.05). 정적 균형 훈련시, 수평보다 수직과 대각선의 시각 조건을 준다면 균형 훈련에 도움을 줄 수 있다고 사료된다.

Keywords

OHHGBW_2019_v10n7_47_f0001.png 이미지

Fig. 1. Visual direction

OHHGBW_2019_v10n7_47_f0002.png 이미지

Fig. 2. Static balance measurement

OHHGBW_2019_v10n7_47_f0003.png 이미지

Fig. 3. Experimental procedure

Table 1. Subject characteristic

OHHGBW_2019_v10n7_47_t0001.png 이미지

Table 2. Comparison of the Weight Distribution Index according to the ground and visual conditions

OHHGBW_2019_v10n7_47_t0002.png 이미지

Table 3. Comparison of weight distribution of both feet according to the ground and visual conditions

OHHGBW_2019_v10n7_47_t0003.png 이미지

Table 4. Comparison of General Stability Index according to the ground and visual conditions

OHHGBW_2019_v10n7_47_t0004.png 이미지

References

  1. B. Lakhani & A. Mansfield. (2015). Visual feedback of the centre of gravity to optimize standing balance. Gait & posture, 41(2), 499-503. DOI : 10.1016/j.gaitpost.2014.12.003
  2. A. F. Ambrose., L. Cruz & G. Paul. (2015). Falls and fractures: a systematic approach to screening and prevention. Maturitas, 82(1), 85-93. DOI : 10.1016/j.maturitas.2015.06.035
  3. J. H. Pasma, D. Engelhart, A. C. Schouten, H. Van der Kooij, A. B. Maier & C. G. Meskers. (2014). Impaired standing balance: the clinical need for closing the loop. Neuroscience, 267, 157-165. DOI : 10.1016/j.neuroscience.2014.02.030
  4. D. Logan, T. Kiemel & J. J. Jeka. (2014). Asymmetric sensory reweighting in human upright stance. PLoS One, 9(6), e100418. DOI : 10.1371/journal.pone.0100418
  5. D. Engelhart, A. C. Schouten, R. G. Aarts & H. van der Kooij. (2015). Assessment of multi-joint coordination and adaptation in standing balance: a novel device and system identification technique. IEEE transactions on neural systems and rehabilitation engineering, 23(6), 973-982. DOI : 10.1109/TNSRE.2014.2372172
  6. M.. S. Kim. (2016). Therapeutic Effect of Tetrax based on Visual Feedback Training on Balance Dysfunction due to Ataxia in Subjects with Cerebellar Stroke: A Retrospective Study. J Korean Soc Phys Med, 11(4), 105-114. DOI : 10.13066/kspm.2016.11.4.105
  7. F. A. Hazime, P. Allard, M. R. Ide, C. M. Siqueira, C. F. Amorim & C. Tanaka. (2012). Postural control under visual and proprioceptive perturbations during double and single limb stances: insights for balance training. Journal of bodywork and movement therapies, 16(2), 224-229. DOI : 10.1016/j.jbmt.2011.02.003
  8. L. Asslander, G. Hettich & T. Mergner. (2015). Visual contribution to human standing balance during support surface tilts. Human movement science, 41, 147-164. DOI : 10.1016/j.humov.2015.02.010
  9. S. G. Lisberger. (2015). Visual guidance of smooth pursuit eye movements. Annual review of vision science, 1, 447-468. DOI : 10.1146/annurev-vision-082114-035349
  10. L. E. Cofre Lizama, M. Pijnappels, N. P. Reeves, S. M. Verschueren & J. H. van Dieen. (2015). Can explicit visual feedback of postural sway efface the effects of sensory manipulations on mediolateral balance performance? Journal of neurophysiology, 115(2), 907-914. DOI : 10.1152/jn.00103.2014
  11. J. Barra, P. Senot, & L. Auclair. (2017). Internal model of gravity influences configural body processing. Cognition, 158, 208-214. DOI : 10.1016/j.cognition.2016.10.018
  12. N. M. Thomas, T. M. Bampouras, T. Donovan & S. Dewhurst. (2016). Eye movements affect postural control in young and older females. Frontiers in aging neuroscience, 8, 216. DOI : 10.3389/fnagi.2016.00216
  13. K. Tisher, K. Mann, S. VanDyke, C. Johansson & S. Vallabhajosula. (2019). Functional measures show improvements after a home exercise program following supervised balance training in older adults with elevated fall risk. Physiotherapy theory and practice, 35(4), 305-317. DOI : 10.1080/09593985.2018.1444116
  14. L. Hooge, M. Nyström, T. Cornelissen & K. Holmqvist. (2015). The art of braking: Post saccadic oscillations in the eye tracker signal decrease with increasing saccade size. Vision research, 112, 55-67. DOI : 10.1016/j.visres.2015.03.015
  15. B. J. Farrell, M. A. Bulgakova, I. N. Beloozerova, M. G. Sirota & B. I. Prilutsky. (2014). Body stability and muscle and motor cortex activity during walking with wide stance. Journal of neurophysiology, 112(3), 504-524. DOI : 10.1152/jn.00064.2014
  16. A. Bogaerts, S. Verschueren, C. Delecluse, A. L. Claessens & S. Boonen. (2007). Effects of whole body vibration training on postural control in older individuals: a 1 year randomized controlled trial. Gait & posture, 26(2), 309-316. DOI : 10.1016/j.gaitpost.2006.09.078
  17. I. Indovina, V. Maffei & F. Lacquaniti. (2013). Anticipating the effects of visual gravity during simulated self-motion: estimates of time-to-passage along vertical and horizontal paths. Experimental brain research, 229(4), 579-586. DOI : 10.1007/s00221-013-3620-3
  18. F. Lacquaniti, G. Bosco, S. Gravano, I. Indovina, B. La Scaleia, V. Maffei & M. Zago. (2015). Gravity in the brain as a reference for space and time perception. Multisensory research, 28(5-6), 397-426. DOI : 10.1163/22134808-00002471
  19. P. Balestrucci, E. Daprati, F. Lacquaniti & V. Maffei. (2017). Effects of visual motion consistent or inconsistent with gravity on postural sway. Experimental brain research, 235(7), 1999-2010. DOI : 10.1007/s00221-017-4942-3