DOI QR코드

DOI QR Code

환기시스템의 굴절 및 평판형 열교환기 형상에 따른 성능비교

A Comparison of Performance on the Orthogonal and Refraction Heat Exchanger Shape in Air Ventilation System

  • 투고 : 2019.04.25
  • 심사 : 2019.07.20
  • 발행 : 2019.07.28

초록

최적의 환기시스템 활용과 에너지 절약을 위한 급 배기공기 간의 열교환을 적용시킨 열회수시스템의 활용과 보급은 에너지관리시스템에서 필수적이다. 이러한 기술은 특히, 겨울철과 여름철의 냉난방에너지를 절약할 수 있어 고효율에너지 빌딩의 기반기술의 주요 요소이다. 본 논문에서는 균일한 형상과 동일한 유동조건에서 열교환기 성능을 비교하기 위해 종이, 플라스틱, 알루미늄을 재질로 시뮬레이션을 통한 열전달효율을 검토하였다. 또한 평판형과 굴절형 구조를 갖는 열교환기의 형상에 따른 열전달 효율을 시험하였고, 그 결과를 토대로 열전달 성능과 압력손실에 대해 고성능의 열교환기를 제작하는데 기여를 할 수 있을 것으로 기대된다.

Application of heat recovery system applying air supply and cexhaust ventilation device essential in energy management system for the optimum ventilation system utilization and energy saving. This is a key element of infrastructure technology for high-efficiency energy buildings, because it can save heating and cooling energy in winter and summer. In this paper, heat transfer efficiency was simulated using paper, plastic, and aluminum materials that was examined to compare heat exchanger performance under uniform flow conditions. We tested heat transfer efficiengy according to the shape of two of that, one is orthogonal and the other is refraction shape. Based on the simulation results, it is expected to contribute to the production of high performance heat exchanger with heat transfer performance and pressure loss.

키워드

OHHGBW_2019_v10n7_281_f0001.png 이미지

Fig. 1. Comparison of Al and PP total heat transfer

OHHGBW_2019_v10n7_281_f0002.png 이미지

Fig. 2. Heat exchaner shape of orthogonal and refraction type.

OHHGBW_2019_v10n7_281_f0003.png 이미지

Fig. 3. Computational analysis results.

OHHGBW_2019_v10n7_281_f0004.png 이미지

Fig. 4. Simulation result value of Orthogonal type.

OHHGBW_2019_v10n7_281_f0005.png 이미지

Fig. 5. Simulation result value of Refraction type.

Table 1. Flat heat exchanger materials.

OHHGBW_2019_v10n7_281_t0001.png 이미지

Table 2. Total heat transfer coefficient of Al and PP.

OHHGBW_2019_v10n7_281_t0002.png 이미지

Table 3. Variables of analysis for Orthogonal type.

OHHGBW_2019_v10n7_281_t0003.png 이미지

Table 4. Variables of analysis for Refraction type.

OHHGBW_2019_v10n7_281_t0004.png 이미지

Table 5. Material properties.

OHHGBW_2019_v10n7_281_t0005.png 이미지

참고문헌

  1. H. H. Hyeon. (2019). A Study on the Optimal Design Technology in the Medical Ventilation System. Master's thesis. Nambu University, GwangJu.
  2. R. Fehle, J. Klas, & F. Mayinger. (1995) Investigation of local heat transfer in compact heat exchangers by holgraphic interferometry. Experimental Thermal and Fluid Science, 10(2), 181-194. https://doi.org/10.1016/0894-1777(94)00088-P
  3. V. Saravanan & C. K. Umesh. (2017). Experimental investigation for flow and heat transfer over pin fin heat exchanger. International J. of Eng. Sci. & Reserach Tech., 6(12), 511-518.
  4. S. W. Choi, Y. H. Paik, H. C. Kang & D. Y. Kim. (1997). Calculation of a 2-D Channel Flow with a Dimple. J. of Mechanical engineering B, 21(1), 49-56.
  5. S. Y. Yoo, M. H. Chung & Y. M. Lee. (2005). A Study on the Factors Affecting the Performance of Plastic Plate Heat Exchanger. Korean Journal of Air-Conditioning and Refrigeration Eng., 17(9), 839-848.
  6. H. Zhao, Z. Liu, C. Zhang, N. Guan, & H. Zhao. (2016). Pressure drop and friction factor of a rectangular channel with staggered mini pin fins of different shapes. Experimental Thermal and fluid Sci., 71, 57-69. https://doi.org/10.1016/j.expthermflusci.2015.10.010
  7. C. A. Rubio-Jimenez, S. G. Kandlikar, & A. Hernandez-Guerrero. (2012). Numerical Analysis of Novel Micro Pin Fin Heat Sink With Variable Fin Density. IEEE Trans. On Components, Packaging And Manufacturing Giutechnology, 2(5), 825-833. https://doi.org/10.1109/TCPMT.2012.2189925
  8. Y. Kim & Y. Kim. (2005). Heat transfer characteristics of flat plate finned-tube heat exchangers with large fin pitch. Int. J. Refrig., 28(6), 851-858. https://doi.org/10.1016/j.ijrefrig.2005.01.013
  9. J. Yoo. (2012). Influence of Chevron Angle on Performance and Life-cycle of the Brazed Plate Heat Exchangers. Master's thesis. Chungnam National University. Chungnam.
  10. R. Borrajo-Pelaez, J. Ortega-Casanova & J. M. Cejudo-Lopez. (2010). A Three-Dimensional Numerical Study and Comparison Between the Air Side Model and the Air/Water Side Model of a Plain Fin-and-Tube Heat Exchanger. Appl Therm Engineering, 30(13), 1608-1615. https://doi.org/10.1016/j.applthermaleng.2010.03.018
  11. J. G. Cevallos, A. E. Bergles, A. B. Cohen, P. Rodgers & A. K. Gupta. (2012). Polymer Heat Exchangers- History, Opportunities, and Challenges. Heat Trans Eng, 33(13), 1075-1093. https://doi.org/10.1080/01457632.2012.663654
  12. G. Hetsroni & A. Moyak. (1994). Heat transfer and pressure drop in a plastic heat exchanger with triangular channels. Chemical Engineering and Processing, 33(2), 91-100. https://doi.org/10.1016/0255-2701(94)85007-0
  13. M. H. Chung. (2002). Study on the Heat Recovery Performance of Plastic and Paper Plate Heat Exchanger. Master's thesis. Chungnam National University. Chungnam
  14. K. Aydin, O. V. Guler & A. Kecebas. (2017). Parameters Affecting the Performance of a Plate Heat Exchanger using the CFD. Energy Research Journal. 8(2), 22-31 https://doi.org/10.3844/erjsp.2017.22.31
  15. J. H. Park. (2010). A Study on the Efficiency of a Heat Exchange by Simulator Experiment for an Aluminium Plate Heat Exchanger. Master's thesis. Tong-Myong University. Busan.