DOI QR코드

DOI QR Code

Assessment of fish fineness ratios passing through a fishway

어도를 통과하는 어류의 형태 체형비 평가

  • Received : 2019.11.08
  • Accepted : 2019.12.16
  • Published : 2019.12.31

Abstract

To understand the relationship between water velocity in a fishway and fish morphology, the fineness ratio of fish, expressed as the standard length to the body depth, was measured. The fineness ratios of fish groups belonging to Cyprinidae, Acheilognathinae, Centropomidae, and Centrachidae were relatively low. The FRs of other groups, excluding eel-shaped types of fish, were over 4.5, indicating streamlined structures. The fineness ratios of Korean fish were classified into three different types: type I was Bitterling-Carp group that favored a slow-flowing pool habitat(FRs ranged from 2.1 to 3.3), type II was the Chub group representing streamlined types (FRs FRs ranged from 3.7 to 5.2), and type III was the Smelt-Barbel fish group that preferred riffle-run habitats with high velocity (FRs is over 5.2). Fish abundance analysis of fish using the fishway during the experimental periods showed a relatively high abundance of both type II and III compared to type I. The FRs of the fish passing through fishway(velocity 0.5-1.0 m s-1) ranged from 4.5 to 5.0, indicating that the fish using the fishway were mainly the streamlined type. As one of the standard fishways in Korea, the flow rate of the ice harbor type ranged from 0.2 to 2.6 m s-1. The FR values of the fish groups using the fishway ranged from 4.3 to 5.0. In contrast, the flow rate measured in an artificial channel type of fishway (same as a natural type of fishway) ranged from 0.1 to 1.9 m s-1 and the FR values for the fish groups using a natural type of fishway ranged from 3.3 to 5.3. The low FR values in natural fish are considered to be due to differences in the flow rates between the two types of fishways.

본 연구에서 국내 어류 분류군별 체형비(Fineness Ratios; FR)를 분석한 결과 일부 잉어과와 납자루아과, 꺽지과, 검정우럭과 등의 어류 체형비가 상대적으로 낮았고, 그 외 분류군별 어류의 체형비는 4.5 이상으로 대부분 유영력이 뛰어난 것으로 나타났다. 유영성 어류를 대상으로 체장-체고비에 따른 서식지 선호를 분석한 결과 크게 3가지 어종타입은 구분되었다. 유영력이 낮은 납자루-붕어형은 체형비는 2.1~3.3 범위이며, 유선형의 비율을 가지는 피라미-참갈겨니형은 체형비가 3.7~5.2 범위였다. 은어-누치형은 체장이 체고의 5배 이상으로 유영력이 뛰어난 형태를 가지고 있었다. 어류 체형비에 따른 서식지 유형을 구분하면 붕어-납자루형은 흐름이 완만한 소(Pool habitat)형태의 서식지를 선호하는 어종 우세하였고, 반면 피라미-참갈겨니형, 은어-누치형의 경우 유속이 빠른 여울형서식지(Riffle habitat)를 선호하는 어종들로 구성되었다. 조사기간 동안 어도를 이용한 어류의 상대풍부도를 분석한 결과, 대부분의 어종들이 피라미-참갈겨니, 은어-누치형에 속하는 유영성이 높은 어류들로 확인되었다. 어도 내 유속이 0.5~1.0 m s-1 범위에서 이용 어종의 FRs는 4.5~5.0 범위로 나타나 대부분 유영성 어종들이 어도를 주로 이용하는 것으로 나타났다.

Keywords

References

  1. Blake RW. 2004. Fish functional design and swimming performance. J. Fish Biol. 65:1193-1222. https://doi.org/10.1111/j.0022-1112.2004.00568.x
  2. Bond CE. 1996. Biology of Fishes, 2nd ed. Saunders College Publishing, OR, USA. p. 750.
  3. Choi JW, CS Park, BJ Lim, JH Park and KG An. 2013. Fish passage evaluations in the fishway constructed on Seungchon weir. J. Environ. Sci. Int. 22:215-223. https://doi.org/10.5322/JESI.2013.22.2.215
  4. Domenici P and RW Blake. 1997. The kinematics and performance of fish fast start swimming. J. Exp. Biol. 200:1165-1178. https://doi.org/10.1242/jeb.200.8.1165
  5. Domenici P. 2003. Habitat, body design and the swimming performance of fish. pp.137-160. In Vertebrate Biomechanics and Evolution (Bels VL, JP Gasc and A Casinos eds.). BIOS Scientific Publishers Ltd, Oxford.
  6. Gaston KA, JA Eft and TE Lauer. 2012. Morphology and its effect on habitat selection of stream fishes. Proc. Indiana Acad. Sci. 121:71-78.
  7. Geum Gang Watershed Management Committee. 2015. Evaluation and Improvement of Fishway Efficiency. Kongju National University Industry-University Cooperation Foundation, Korea. p. 170.
  8. Howland HC. 1974. Optimal strategies for predator avoidance: the relative importance of speed and manoeuvrability. J. Theoret. Biol. 47:333-350. https://doi.org/10.1016/0022-5193(74)90202-1
  9. Kim IS and JY Park. 2002. Freshwater Fishes of Korea. KyoHak Publishing Co., Seoul.
  10. K water. 2015. Monitoring of Fishway in Multi-function Weir. Kunsan National University Industry-Academic Cooperation Foundation, Korea. p. 662.
  11. Langerhans RB, CA Layman, AM Shokrollahi and TJ DeWitt. 2004. Predator driven phenotypic diversification in Gambusia affinis. Evolution 58:2305-2318. https://doi.org/10.1111/j.0014-3820.2004.tb01605.x
  12. Langerhans RB and DN Reznick. 2010. Ecology and evolution of swimming performance in fishes: predicting evolution with biomechanics. pp. 200-248. In Fish Locomotion: An Eco-Ethological Perspective (Domenici P ed.). Science Publishers, Enfeild.
  13. Lauder GV. 2005. Locomotion. pp. 3-46. In The Physiology of Fishes (3rd ed) (Evans DH and JB Claiborne eds.). CRC Press, Boca Raton, FL.
  14. Lauder GV and ED Tytell. 2006. Hydrodynamics of undulatory propulsion. pp. 425-468. In Fish Biomechanics (Shadwick RE and GV Lauder eds.). Academic Press, San Diego, CA.
  15. MLIT. 2009. River Design Criteria, Commentary. Ministry of Land, Infrastructure and Transport, Sejong, Korea. p. 628.
  16. Nakamura S. 1991. Design of Fishways. Sankaido Publishing Company, Japan. p. 376.
  17. Nelson JS. 1994. Fisheries of the World (3rd ed.). John Wiley & Sons, New York. p. 600.
  18. Park CS and KG An. 2014. Fish passage assessments in the fishway of Juksan weir constructed in the downstream area of Youngsan-river watershed. J. Environ. Sci. Int. 23:1513-1522. https://doi.org/10.5322/JESI.2014.23.8.1513
  19. Plaut I. 2001. Critical swimming speed: its ecological relevance. Comp. Biochem. Physiol. A 131:41-50. https://doi.org/10.1016/S1095-6433(01)00462-7
  20. Roff DA. 2002. Life History Evolution. Sinauer Associates Inc., Sunderland, MA. p. 527.
  21. Ross ST. 1986. Resource partitioning in fish assemblages: a review of field studies. Copeia 1986:352-388. https://doi.org/10.2307/1444996
  22. Scamecchia DL. 1988. The importance of streamlining in influencing fish community structure in channelized and unchannelized reaches of a prairie stream. Regul. Rivers-Res. Manage. 2:155-166. https://doi.org/10.1002/rrr.3450020209
  23. Vogel S. 1994. Life in Moving Fluids (2nd ed.). Princeton University Press, Princeton, NJ. p. 467.
  24. Walker JA. 1997. Ecological morphology of lacustrine threespine stickleback Gasterosteus aculeatus L. (Gasterosteidae) body shape. Biol. J. Linnean Soc. 61:3-50. https://doi.org/10.1006/bijl.1996.9999
  25. Walker JA, CK Ghalambor, OL Griset, D Mckenney and DN Reznick. 2005. Do faster starts increase the probability of evading predators? Funct. Ecol. 19:808-815. https://doi.org/10.1111/j.1365-2435.2005.01033.x
  26. Webb PW. 1986. Locomotion and predator prey relationships. pp. 24-41. In Predator Prey Relationships (Lauder GV and ME Feder eds.). University of Chicago Press, Chicago, IL.