DOI QR코드

DOI QR Code

Influence of denitrified biofloc water on the survival rate and physiological characteristics of Pacific white shrimp juveniles, Litopenaeus vannamei

바이오플락 탈질수가 어린 흰다리새우, Litopenaeus vannamei의 생존율 및 생리특성에 미치는 영향

  • Kim, Su-Kyoung (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Jang, Jin Woo (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Jo, Yong Rok (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Jun-Hwan (West Sea Fisheries Research Institute, National Institute of Fisheries Science) ;
  • Kim, Su Kyoung (West Sea Fisheries Research Institute, National Institute of Fisheries Science)
  • 김수경 (국립수산과학원 서해수산연구소) ;
  • 장진우 (국립수산과학원 서해수산연구소) ;
  • 조영록 (국립수산과학원 서해수산연구소) ;
  • 김준환 (국립수산과학원 서해수산연구소) ;
  • 김수경 (국립수산과학원 서해수산연구소)
  • Received : 2019.03.25
  • Accepted : 2019.04.24
  • Published : 2019.06.30

Abstract

This study investigates the effect of denitrified biofloc water on changes in the water quality parameters and the physiological characteristics of shrimps. Biofloc rearing water contains a large number of microorganisms and can rapidly stabilize the water quality and energy saving if reusable due to high water temperatures. Rearing water contain floating bacteria with both aerobic and anaerobic bacteria. Therefore, when the carbon source is added in limited air supply, the anaerobic state is activated and the denitrification process is possible. In this study, the denitrification water had the following properties: ammonia (6.9 mg L-1), nitrite (0.3 mg L-1), nitrate concentration (9.2 mg L-1), high pH (8.42) and alkalinity (590 mg L-1). The experimental group consisted of seawater (SW, control), a mixture of Seawater and denitrified biofloc water (DNW) in the ratio of 3:1, 1:1 and DNW only. All experiments were done in triplicate. As a result, the survival rate never changed even when 100% of the denitrification water was utilized. However, a body fluid analysis showed that creatine and BUN were increased due to index of stress and the tissue damage resulting from the high denitrified water content. Body fluid ions (Na+, K+, and Cl-) significantly decreased as the denitrified water content increased. It was recommended that the denitrification water be mixed with a certain ratio (less than 50%) in the future as it may affect the osmotic pressure control in shrimps.

안정된 바이오플락 사육수에는 대량의 미생물들이 존재하고 있으며 사육수온이 높아 재사용이 가능할 경우 빠른 수질안정화 및 에너지 절약을 할 수 있다. 바이오플락 사육수 내 부유하고 있는 자가 및 타가 영양세균은 호기성과 혐기성 세균을 모두 포함하고 있어 탄소원을 넣고 산소를 공급하지 않는 혐기성 상태로 만들면 탈질과정이 가능하다. 본 연구에서 바이오플락 탈질수의 특성은 암모니아(6.9 mg L-1), 아질산(0.3 mg L-1), 질산농도(9.2 mg L-1), 높은 pH(8.42), alkalinity (590 mg L-1)였으며 이 탈질수를 첨가한 사육수의 물리적 환경 변화가 어린새우의 생존 및 생리적 특성에 미치는 영향을 조사하였다. 그 결과 탈질수를 100% 사용하여도 생존율의 변화를 보이지 않았으나 혈림프를 포함한 체액 분석결과 탈질수 혼합에 의한 조직손상 및 스트레스 지표인 크레아틴, 혈중 요소성 질소의 증가가 관찰되었고 탈질수 혼합비율이 높을수록 새우 체내 이온(Na+, K+, Cl-)의 농도가 유의적으로 감소하여 향후 삼투압조절에 영향을 미칠 수 있는 것으로 나타남에 따라 탈질수를 일정비율로(50% 미만) 혼합하여 사용하는 것이 바람직한 것으로 사료된다.

Keywords

References

  1. Burford MA, PJ Thompson, RP McIntosh, RH Bauman and DC Pearson. 2003. Nutrient and microbial dynamics in high-intensity, zero-exchange shrimp ponds in Belize. Aquaculture 219:393-411. https://doi.org/10.1016/S0044-8486(02)00575-6
  2. Chen SM and JC Chen. 2003. Effects of pH on survival, growth, molting and feeding of giant freshwater prawn Macrobrachium rosenbergii. Aquaculture 218:613-623. https://doi.org/10.1016/S0044-8486(02)00265-X
  3. Chen JC and Y Lee. 1997. Effects of nitrite exposure on acid-base balance, respiratory protein, and ion concentration of giant freshwater prawn Macrobrachium rosenbergii at low pH. Arch. Environ. Contam. Toxicol. 33:290-297. https://doi.org/10.1007/s002449900256
  4. Cheng SY, LW Shieh and JC Chen. 2013. Changes in hemolymph oxyhemocyanin, acid-base balance, and electrolytes in Marsupenaeus japonicus under combined ammonia and nitrite stress. Aquat. Toxicol. 130-131:132-138. https://doi.org/10.1016/j.aquatox.2012.12.015
  5. Distefano RJ, RJ Neves, LA Helfrich and MC Lewis. 1991. Response of the crayfish Cambarus bartonii to acid exposure in southern Appalachian streams. Can. J. Zool. 69:1585-1591. https://doi.org/10.1139/z91-222
  6. Ebeling JM, MB Timmons and JJ Bisogni. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257:346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019
  7. Furtado PS, BR Campos, FP Serra, M Klosterhoff, LA Romano and W Waiselesky Jr. 2015a. Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquac. Int. 23:315-327. https://doi.org/10.1007/s10499-014-9817-z
  8. Furtado PS, LH Poersch and W Waiselesky Jr. 2015b. The effect of different alkalinity levels on Litopenaeus vannamei reared with biofloc technology (BFT). Aquac. Int. 23:345-358. https://doi.org/10.1007/s10499-014-9819-x
  9. Gopalakrishnan AM, J Rajkumar, G Sun, G Martin and A Parida. 2011. Impact of mineral deposition on shrimp, Penaeus monodon in a high alkaline water. J. Environ. Biol. 32:283-287.
  10. Kuhn DD, SA Smith, GD Boardman, MW Angier, LFJ Marsh and J George. 2010. Chronic toxicity of nitrate to Pacific white shrimp, Litopenaeus vannamei: impacts on survival, growth, antennae length, and pathology. Aquaculture 309:109-114. https://doi.org/10.1016/j.aquaculture.2010.09.014
  11. Le Moullac G and P Haffner. 2000. Environmental factors affecting immune responses in Crustacea. Aquaculture 191:121-131. https://doi.org/10.1016/S0044-8486(00)00422-1
  12. Leungprasert S and P Chanakul. 2010. The reuse of shrimp culture wastewater treated by nitrification and denitrification process. Int. J. Environ. Sci. Dev. 1:371-377. https://doi.org/10.7763/IJESD.2010.V1.72
  13. Li CC and JC Chen. 2008. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under low and high pH stress. Fish Shellfish Immunol. 25:701-709. https://doi.org/10.1016/j.fsi.2008.01.007
  14. Lin YC and JC Chen. 2001. Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. J. Exp. Mar. Biol. Ecol. 259:109-110. https://doi.org/10.1016/S0022-0981(01)00227-1
  15. Lin YC and JC Chen. 2003. Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224:193-201. https://doi.org/10.1016/S0044-8486(03)00220-5
  16. Lourdes C, MS Sonnenholzner, M Wille and P Sorgeloos. 2014. Ammonia tolerance of Litopenaeus vannamei (Boone) larvae. Aquac. Res. 45:470-475. https://doi.org/10.1111/j.1365-2109.2012.03248.x
  17. Racotta IS and R Hernandez-Herrera. 2000. Metabolic responses of the white shrimp, Penaeus vannamei, to ambient ammonia. Comp. Bioch. Physiol. A 125:437-443. https://doi.org/10.1016/S1095-6433(00)00171-9
  18. Roy LA, DA Davis, IP Saoud and RP Henry. 2007. Effects of varying levels of aqueous potassium and magnesium on survival, growth, and respiration of the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters. Aquaculture 262:461-469. https://doi.org/10.1016/j.aquaculture.2006.10.011
  19. Samocha TM, DI Prangnell, TR Hanson, GD Treece, TC Morris, LF Castro and N Staresinic. 2017. Design and operation of super-intensive biofloc-dominated systems for indoor production of the Pacific white shrimp, Litopenaeus vannamei. The World Aquaculture Society, Baton Rouge, LA, USA.
  20. Spotte S. 1979. Water management in closed systems. p. 179. In Fish and Invertebrate Culture (2nd ed.). John Wiley & Sons, New York, USA.
  21. Timmons MB and JM Ebeling. 2013. Recirculating Aquaculture (3rd ed.). Ithaca Publishing Company, Ithaca, New York, USA.
  22. Tseng IT and JC Chen. 2004. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus under nitrite stress. Fish Shellfish Immunol. 17:325-333. https://doi.org/10.1016/j.fsi.2004.04.010
  23. Wang WN, AL Wang, L Chen and Y Liu. 2002. Effects of pH on survival, phosphorus concentration, adenylate energy charge and Na, K-ATPase activities of Penaeus chinensis Osbeck juveniles. Aquat. Toxicol. 60:75-83. https://doi.org/10.1016/S0166-445X(01)00271-5
  24. Wood CM. 2001. Toxic responses of the gill. pp. 1-89. In Target Organ Toxicity in Marine and Freshwater Teleosts, Vol. 1-Organs, (Schlenk and Benson eds.). Taylor & Francis, London. UK.
  25. Zhou J, WN Wang, AL Wang, WY He, QT Zhou, Y Liu and J Xu. 2009. Glutathione S-transferase in the white shrimp Litopenaeus vannamei: characterization and regulation under pH stress. Comp. Biochem. Physiol. C 150:224-230.