DOI QR코드

DOI QR Code

Potential Antimicrobial Applications of Chitosan Nanoparticles (ChNP)

  • Rozman, Nur Amiera Syuhada (Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology) ;
  • Yenn, Tong Woei (Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology) ;
  • Ring, Leong Chean (Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology) ;
  • Nee, Tan Wen (School of Distance Education, Universiti Sains Malaysia) ;
  • Hasanolbasori, Muhammad Ariff (Nanotechnology and Catalyst Research Centre (Nanocat), University of Malaya) ;
  • Abdullah, Siti Zubaidah (Universiti Kuala Lumpur, Branch Campus Malaysian Institute of Chemical and Engineering Technology)
  • 투고 : 2019.04.29
  • 심사 : 2019.07.08
  • 발행 : 2019.07.28

초록

Polymeric nanoparticles are widely used for drug delivery due to their biodegradability property. Among the wide array of polymers, chitosan has received growing interest among researchers. It was widely used as a vehicle in polymeric nanoparticles for drug targeting. This review explored the current research on the antimicrobial activity of chitosan nanoparticles (ChNP) and the impact on the clinical applications. The antimicrobial activities of ChNP were widely reported against bacteria, fungi, yeasts and algae, in both in vivo and in vitro studies. For pharmaceutical applications, ChNP were used as antimicrobial coating for promoting wound healing, preventing infections and combating the rise of infectious disease. Besides, ChNP also exhibited significant inhibitory activities on foodborne microorganisms, particularly on fruits and vegetables. It is noteworthy that ChNP can be also applied to deliver antimicrobial drugs, which further enhance the efficiency and stability of the antimicrobial agent. The present review addresses the potential antimicrobial applications of ChNP from these few aspects.

키워드

참고문헌

  1. Elieh-Ali-Komi D, Hamblin MR. 2016. Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int. J. Adv. Res. 4: 411-427.
  2. Younes I, Rinaudo M. 2015. Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar. Drugs 13: 1133-1174. https://doi.org/10.3390/md13031133
  3. Aljebory AM, Alsalman TM. 2017. Chitosan nanoparticles. Imp. J. Interdiscip. Res. 3: 233-242.
  4. Cheung R, Ng T, Wong J, Chan W. 2015. Chitosan: an update on potential biomedical and pharmaceutical applications. Mar. Drugs 13: 5156-5186. https://doi.org/10.3390/md13085156
  5. Zeng S, Liu L, Shi,Y, Qiu J, Fang W, Rong M, Gao W. 2015. Characterization of silk fibroin/chitosan 3D porous scaffold and in vitro cytology. PLoS One 10: e0128658. https://doi.org/10.1371/journal.pone.0128658
  6. Bernkop-Schnurch A, Dunnhaupt S. 2012. Chitosan-based drug delivery systems. Eur. J. Pharm. Biopharm. 81: 463-469. https://doi.org/10.1016/j.ejpb.2012.04.007
  7. Cava F, Lam H, De Pedro MA, Waldor MK. 2011. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell. Mol. Life Sci. 68: 817-831. https://doi.org/10.1007/s00018-010-0571-8
  8. Ivask A, ElBadawy A, Kaweeteerawat C, Boren D, Fischer H, Ji Z, et al. 2013. Toxicity mechanisms in Escherichia coli vary for silver nanoparticles and differ from ionic silver. ACS Nano 8: 374-386. https://doi.org/10.1021/nn4044047
  9. Birsoy K, Wang T, Chen WW, Freinkman E, Abu-Remaileh M, Sabatini DM. 2015. An essential role of the mitochondrial electron transport chain in cell proliferation is to enable aspartate synthesis. Cell 162: 540-551. https://doi.org/10.1016/j.cell.2015.07.016
  10. Joshi M, Ali SW, Purwar R. 2009. Ecofriendly antimicrobial finishing of textile using bioactive agents based on natural products. Indian J. Fibre Text. Res. 30: 295-304.
  11. El-Tahlawy KF, El-Bendary MA, Elhendawy AG, Hudson SM. 2005. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr. Polym. 60: 421-430. https://doi.org/10.1016/j.carbpol.2005.02.019
  12. Joshi M, Ali SW. Purwar R. 2009. Ecofriendly antimicrobial finishing of textile using bioactive agents based on natural products. Indian J. Fibre Text. Res. 30: 295-304.
  13. Borchard G, LueBen HL, De Boer A, Verhoef, JC, Lehr CM, Junginger HE. 1996. The potential of mucoadhesive polymers in enhancing intestinal peptide drug absorption. III: Effects of chitosan-glutamate and carbomer on epithelial tight junctions in vitro. J. Control. Release 39: 131-138. https://doi.org/10.1016/0168-3659(95)00146-8
  14. Lim EK, Jang E, Lee K, Haam S, Huh YM. 2013. Delivery of cancer therapeutics using nanotechnology. Pharmaceutics 5: 294-317. https://doi.org/10.3390/pharmaceutics5020294
  15. Wang JJ, Zeng ZW, Xiao RZ, Xie T, Zhou GL, Zhan XR, et al. 2011. Recent advances of chitosan nanoparticles as drug carriers. Int. J. Nanomed. 6: 765-774. https://doi.org/10.2147/IJN.S17296
  16. Biranje SS, Madiwale PV, Patankar KC, Chhabra R, Dandekar-Jain P, Adivarekar RV. 2019. Hemostasis and anti-necrotic activity of wound-healing dressing containing chitosan nanoparticles. Int. J. Biol. Macromol. 121: 936-946. https://doi.org/10.1016/j.ijbiomac.2018.10.125
  17. Soares PI, Sousa AI, Silva JC, Ferreira IM, Novo CM, Borges JP. 2016. Chitosan-based nanoparticles as drug delivery systems for doxorubicin: Optimization and modelling. Carbohydr. Polym. 147: 304-312. https://doi.org/10.1016/j.carbpol.2016.03.028
  18. Katas H, Raja MAG, Lam KL. 2013. Development of chitosan nanoparticles as a stable drug delivery system for protein/siRNA. Int. J. Biomater. 2013: 146320.
  19. Sun L, Chen Y, Zhou Y, Guo D, Fan Y, Guo F, et al. 2017. Preparation of 5-fluorouracil-loaded chitosan nanoparticles and study of the sustained release in vitro and in vivo. Asian J. Pharm. Sci. 12: 418-423. https://doi.org/10.1016/j.ajps.2017.04.002
  20. Banik N, Hussain A, Ramteke A, Sharma HK, Maji TK. 2012. Preparation and evaluation of the effect of particle size on the properties of chitosan-montmorillonite nanoparticles loaded with isoniazid. RSC Adv. 2: 10519-10528. https://doi.org/10.1039/c2ra20702h
  21. Hussein AM, Kamil MM, Lotfy SN, Mahmoud KF, Mehaya FM, Mohammad AA. 2017. Influence of nano-encapsulation on chemical composition, antioxidant activity and thermal stability of rosemary essential oil. Am. J. Food Technol. 12:170-177. https://doi.org/10.3923/ajft.2017.170.177
  22. Barrera-Necha LL, Correa-Pacheco ZN, Bautista-Banos S, Hernandez-Lopez M, Jimenez JEM, Mejia AFM. 2018. Synthesis and characterization of chitosan nanoparticles loaded botanical extracts with antifungal activity on Colletotrichum gloeosporioides and Alternaria species. Adv. Microbiol. 8: 286-296.
  23. Saharan V, Sharma G, Yadav M, Choudhary MK, Sharma SS, Pal A, et al. 2015. Synthesis and in vitro antifungal efficacy of Cu-chitosan nanoparticles against pathogenic fungi of tomato. Int. J. Biol. Macromol. 75: 346-353. https://doi.org/10.1016/j.ijbiomac.2015.01.027
  24. Cota-Arriola O, Cortez-Rocha MO, Ezquerra-Brauer JM, Lizardi-Mendoza J, Burgos-Hernandez A, Robles-Sanchez RM, et al. 2013. Ultrastructural, morphological, and antifungal properties of micro and nanoparticles of chitosan crosslinked with sodium tripolyphosphate. J. Polym. Environ. 21: 971-980. https://doi.org/10.1007/s10924-013-0583-1
  25. Pilon L, Spricigo PC, Miranda M, de Moura MR, Assis OBG, Mattoso LHC, et al. 2015. Chitosan nanoparticle coatings reduce microbial growth on fresh-cut apples while not affecting quality attributes. J. Food Sci. Technol. 50: 440-448. https://doi.org/10.1111/ijfs.12616
  26. Hussein AM, Kamil MM, Lotfy SN, Mahmoud KF, Mehaya FM, Mohammad AA. 2017. Influence of nano-encapsulation on chemical composition, antioxidant activity and thermal stability of rosemary essential oil. Am. J. Food Technol. 12: 170-177. https://doi.org/10.3923/ajft.2017.170.177
  27. Hernandez-Lauzardo AN, Bautista-Banos S, Velazquez-Del Valle MG, Mendez-Montealvo MG, Sanchez-Rivera MM, Bello-Perez LA. 2008. Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydr. Polym. 73: 541-547. https://doi.org/10.1016/j.carbpol.2007.12.020
  28. Garrido-Maestu A, Ma Z, Chen N, Ko S, Tong Z, Jeong KC. 2018. Engineering of Chitosan-derived nanoparticles to enhance antimicrobial activity against foodborne pathogen Escherichia coli O157: H7. Carbohydr. Polym. 197: 623-630. https://doi.org/10.1016/j.carbpol.2018.06.046
  29. Qian J, Pan C, Liang C. 2017. Antimicrobial activity of Feloaded chitosan nanoparticles. Eng. Life Sci. 17: 629-634. https://doi.org/10.1002/elsc.201600172
  30. Lu B, Ye H, Shang S, Xiong Q, Yu K, Li Q, Lan G. 2018. Novel wound dressing with chitosan gold nanoparticles capped with a small molecule for effective treatment of multiantibiotic-resistant bacterial infections. Nanotechnology 29: 425603. https://doi.org/10.1088/1361-6528/aad7a7
  31. Gomes LP, Andrade CT, Del Aguila EM, Alexander C, Paschoalin VM. 2018. Assessing the antimicrobial activity of chitosan nanoparticles by fluorescence-labeling. Intl. J. Biotechnol. Bioeng. 12: 111-117.
  32. Covarrubias C, Trepiana D, Corral C. 2018. Synthesis of hybrid copper-chitosan nanoparticles with antibacterial activity against cariogenic Streptococcus mutans. Dent. Mater. J. 37: 379-384. https://doi.org/10.4012/dmj.2017-195
  33. Alishahi, A. 2014. Antibacterial effect of chitosan nanoparticle loaded with nisin for the prolonged effect. J. Food Saf. 34: 111-118. https://doi.org/10.1111/jfs.12103

피인용 문헌

  1. Antibacterial Activity of Chitosan Nanoparticles: A Review vol.8, pp.9, 2019, https://doi.org/10.3390/pr8091173
  2. Effect of chitosan on Toxoplasma gondii infection: A systematic review vol.11, 2019, https://doi.org/10.1016/j.parepi.2020.e00189
  3. Effect of chitosan nanoparticles on quorum sensing-controlled virulence factors and expression of LasI and RhlI genes among Pseudomonas aeruginosa clinical isolates vol.7, pp.4, 2019, https://doi.org/10.3934/microbiol.2021025
  4. Synergistic interactions of ionic liquids and antimicrobials improve drug efficacy vol.24, pp.1, 2021, https://doi.org/10.1016/j.isci.2020.101853
  5. Evaluation of Antibacterial Effects of Fissure Sealants Containing Chitosan Nanoparticles vol.2021, 2021, https://doi.org/10.1155/2021/8975948
  6. Fabrication and Characterization of Chitosan/Poly(Lactic-Co-glycolic Acid) Core-Shell Nanoparticles by Coaxial Electrospray Technology for Dual Delivery of Natamycin and Clotrimazole vol.9, 2021, https://doi.org/10.3389/fbioe.2021.635485
  7. Application of Fish Collagen-Nanochitosan-Henna Extract Composites for the Control of Skin Pathogens and Accelerating Wound Healing vol.2021, 2019, https://doi.org/10.1155/2021/1907914
  8. Leflunomide Sustained Skin Delivery Based on Sulfobetaine-Modified Chitosan Nanoparticles Embedded in Biodegradable Polyesters Films vol.13, pp.6, 2019, https://doi.org/10.3390/polym13060960
  9. Chitosan-Based Nanomaterials as Valuable Sources of Anti-Leishmanial Agents: A Systematic Review vol.11, pp.3, 2021, https://doi.org/10.3390/nano11030689
  10. Use of chitosan nanoparticles loaded with biologically active substances for pre-harvest plant protection from pathogens (a review) vol.1942, pp.1, 2019, https://doi.org/10.1088/1742-6596/1942/1/012077
  11. Role of bioglass in enamel remineralization: Existing strategies and future prospects—A narrative review vol.110, pp.1, 2019, https://doi.org/10.1002/jbm.b.34904