DOI QR코드

DOI QR Code

Purification and Characterization of a Bacteriocin, BacBS2, Produced by Bacillus velezensis BS2 Isolated from Meongge Jeotgal

  • Perumal, Venkatesh (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Yao, Zhuang (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Kim, Jeong A (Division of Applied Life Science (BK21 Plus), Graduate School, Gyeongsang National University) ;
  • Kim, Hyun-Jin (Institute of Agriculture and Life Science, Gyeongsang National University) ;
  • Kim, Jeong Hwan (Institute of Agriculture and Life Science, Gyeongsang National University)
  • Received : 2019.03.29
  • Accepted : 2019.06.10
  • Published : 2019.07.28

Abstract

Bacillus velezensis BS2 was isolated from meongge (common sea squirt) jeotgal, a Korean fermented seafood, and produces a bacteriocin, BacBS2, which strongly inhibits Listeria monocytogenes and Bacillus cereus. BacBS2 was partially purified by Q-Sepharose column chromatography after ammonium sulfate precipitation of the culture supernatant, then further purified by Sephadex G-50 column chromatography. Partially purified BacBS2 was estimated to be 6.5 kDa in size by Tricine-SDS PAGE and activity detection by gel-overlay. Enzyme treatment and FT-IR spectrum of partially purified BacBS2 confirmed its proteinaceous nature. BacBS2 was fully stable at pH 4-9, and half of activity was retained at pH 1-3. Full activity was retained after exposure to $80^{\circ}C$ for 15 min, but half of the activity was retained upon exposure to $90^{\circ}C$ for 15 min or $100^{\circ}C$for 10 min. BacBS2 inhibited L. monocytogenes by bactericidal mode of action. B. velezensis BS2 and its BacBS2 seem useful as biopreservatives for fermented foods such as jeotgal.

Keywords

References

  1. Sumi CD, Yang BW, Yeo IC, Hahm YT. 2015. Antimicrobial peptides of the genus Bacillus: a new era for antibiotics. Can. J. Microbiol. 61: 93-103. https://doi.org/10.1139/cjm-2014-0613
  2. Stein T. 2005. Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol. Microbiol. 56: 845-857. https://doi.org/10.1111/j.1365-2958.2005.04587.x
  3. Leite JA, Tulini FL, dos Reis-Teixeira FB, Rabinovitch L, Chaves JQ, Rosa NG, et al. 2016. Bacteriocin-like inhibitory substances (BLIS) produced by Bacillus cereus: preliminary characterization and application of partially purified extract containing BLIS for inhibiting Listeria monocytogenes in pineapple pulp. LWT-Food Sci. Technol. 72: 261-266. https://doi.org/10.1016/j.lwt.2016.04.058
  4. Abdel-Mohsein H, Yamamoto N, Otawa K, Tada C, Nakai Y. 2010. Isolation of bacteriocin-like substances producing bacteria from finished cattle-manure compost and activity evaluation against some food-borne pathogenic and spoilage bacteria. J. Gen. Appl. Microbiol. 56: 151-161. https://doi.org/10.2323/jgam.56.151
  5. Chehimi S, Delalande F, Sable S, Hajlaoui MR, Van Dorsselaer A, Limam F, et al. 2007. Purification and partial amino acid sequence of thuricin S, a new anti-Listeria bacteriocin from Bacillus thuringiensis. Can. J. Microbiol. 53: 284-290. https://doi.org/10.1139/w06-116
  6. Martirani L, Varcamonti M, Naclerio G, De Felice M. 2002. Purification and partial characterization of bacillocin 490, a novel bacteriocin produced by a thermophilic strain of Bacillus licheniformis. Microb. Cell Fact. 1: 1-5. https://doi.org/10.1186/1475-2859-1-1
  7. Yao Z, Kim JA, Kim JH. 2019. Charac terization of a fibrinolytic enzyme secreted by Bacillus velezensis BS2 isolated from sea squirt jeotgal. J. Microbiol. Biotechnol. 29: 347-356. https://doi.org/10.4014/jmb.1810.10053
  8. Ye M, Tang X, Yang R, Zhang H, Li F, Tao F, et al. 2018. Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chem. Biol. 13: 500-505. https://doi.org/10.1021/acschembio.7b00874
  9. Cho MS, Jin YJ, Kang BK, Park YK, Kim C, Park DS. 2018. Understanding the ontogeny and succession of Bacillus velezensis and B. subtilis subsp. subtilis by focusing on kimchi fermentation. Sci. Rep. 8: 7045. https://doi.org/10.1038/s41598-018-25514-5
  10. Yi Y, Zhang Z, Zhao F, Liu H, Yu L, Zha J, Wang G, 2018. Probiotic potential of Bacillus velezensis JW: antimicrobial activity against fish pathogenic bacteria and immune enhancement effects on Carassius auratus. Fish Shellfish Immunol. 78: 322-330. https://doi.org/10.1016/j.fsi.2018.04.055
  11. Nam MH, Park MS, Kim HG, Yoo SJ. 2009. Biological control of strawberry Fusarium wilt caused by Fusarium oxysporum f. sp. fragariae using Bacillus velezensis BS87 and RK1 formulation. J. Microbiol. Biotechnol. 19: 520-524. https://doi.org/10.4014/jmb.0805.333
  12. Giongo JL, Lucas FS, Casarin F, Heeb P, Brandelli A. 2007. Keratinolytic proteases of Bacillus species isolated from the Amazon basin showing remarkable de-hairing activity. World J. Microbiol. Biotechnol. 23: 375-382. https://doi.org/10.1007/s11274-006-9234-1
  13. Ruiz-Garcia C, Bejar V, Martinez-Checa F, Llamas I, Quesada E. 2005. Bacillus velezensis sp. nov., a surfactant-producing bacterium isolated from the river Velez in Malaga, southern Spain. Int. J. Syst. Evol. Microbiol. 55: 191-195. https://doi.org/10.1099/ijs.0.63310-0
  14. Gao YH, Guo RJ, Li SD. 2018. Draft genome sequence of Bacillus velezensis B6, a rhizobacterium that can control plant diseases. Genome Announc. 6(12): e00182-18.
  15. Baptista JP, Sanches PP, Teixeira GM, Morey AT, Tavares ER, Yamada-Oqatta SF, et al. 2018. Complete genome sequence of Bacillus velezensis LABIM40, an effective antagonist of fungal plant pathogens. Genome Announc. 6: e00595-18.
  16. Kamoun F, Mejdoub H, Aouissaoui H, Reinbolt J, Hammami A, Jaoua S. 2005. Purification, amino acid sequence and characterization of Bacthuricin F4, a new bacteriocin produced by Bacillus thuringiensis. J. Appl. Microbiol. 98: 881-888. https://doi.org/10.1111/j.1365-2672.2004.02513.x
  17. Bradford MM. 1976. Rapid and sensitive methods for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1016/0003-2697(76)90527-3
  18. Schagger H, von Jagow G. 1987. Tricine-sodium dodecyl sulphate polyacrylamide gel electrophoresis for the separation of protein in the range from 1 to 100 kDa. Anal. Biochem. 166: 368-379. https://doi.org/10.1016/0003-2697(87)90587-2
  19. Liu X, Lee JY, Jeong SJ, Cho KM, Kim GM, Shin JH, et al. 2015. Properties of a bacteriocin produced by Bacillus subtilis EMD4 isolated from ganjang (soy sauce). J. Microbiol. Biotechnol. 25: 1493-1501. https://doi.org/10.4014/jmb.1502.02037
  20. Liu X, Shim JM, Yao Z, Lee JY, Lee KW, Kim HJ, et al. 2016. Properties of antimicrobial substances produced by Bacillus amyloliquefaciens CJW15 and Bacillus amyloliquefaciens SSD8. Microbiol. Biotechnol. Lett. 44: 9-18. https://doi.org/10.4014/mbl.1509.09008
  21. Chung S, Kong H, Buyer JS, Lakshman DK, Lydon J, Kim SD, et al. 2008. Isolation and partial c harac terization of Bacillus subtilis ME488 for suppression of soilborne pathogens of cucumber and pepper. Appl. Microbiol. Biotechnol. 80: 115-123. https://doi.org/10.1007/s00253-008-1520-4
  22. Tapi A, Chollet-Imbert M, Scherens B, Jacques P. 2010. New approach for the detection of non-ribosomal peptide synthetase genes in Bacillus strains by polymerase chain reaction. Appl. Microbiol. Biotechnol. 85: 1521-1531. https://doi.org/10.1007/s00253-009-2176-4
  23. Athukorala SN, Fernando WG, Rashid KY. 2009. Identification of antifungal antibiotics of Bacillus species isolated from different microhabitats using polymerase chain reaction and MALDI-TOF mass spectrometry. Can. J. Microbiol. 55: 1021-1032. https://doi.org/10.1139/W09-067
  24. Sutyak KE, Wirawan RE, Aroutcheva AA, Chikindas ML. 2008. Isolation of the Bacillus subtilis antimicrobial peptide subtilosin from the dairy product-derived Bacillus amyloliquefaciens. J. Appl. Microbiol. 104: 1067-1074. https://doi.org/10.1111/j.1365-2672.2007.03626.x
  25. Cintas LM, Casaus P, Fernandez MF, Hernandez PE. 1998. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15: 289-298. https://doi.org/10.1006/fmic.1997.0160
  26. Benitez LB, Velho RV, Lisboa MP, da Costa Medina LF, Brandelli A. 2010. Isolation and characterization of antifungal peptides produced by Bacillus amyloliquefaciens LBM5006. J. Microbiol. 48: 791-797. https://doi.org/10.1007/s12275-010-0164-0
  27. Perumal V, Repally A, Dasari A, Venkatesan A. 2016. Partial purification and characterization of bacteriocin produced by Enterococcus faecalis DU10 and its probiotic attributes. Prep. Biochem. Biotechnol. 46: 686-694. https://doi.org/10.1080/10826068.2015.1135451
  28. Fan B, Wang C, Song X, Ding X, Wu L, Wu H, Gao X, Borriss R. 2018. Bacillus velezensis FZB42 in 2018: the gram-positive model strain for plant growth promotion and biocontrol. Front. Microbiol. 9: 2491. https://doi.org/10.3389/fmicb.2018.02491
  29. Liu G, Kong Y, Fan Y, Geng C, Peng D, Sun M. 2017. Whole-genome sequencing of Bacillus velezensis LS69, a strain with a broad inhibitory spectrum against pathogenic bacteria. J. Biotechnol. 249: 20-24. https://doi.org/10.1016/j.jbiotec.2017.03.018
  30. Scholz R, Vater J, Budiharjo A, Wang Z, He Y, Dietel K, et al. 2014. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42. J. Bacteriol. 196: 1842-1852. https://doi.org/10.1128/JB.01474-14
  31. Cao Y, Pi H, Chandrangsu P, Li Y, Wang Y, Zhou H, et al. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8: 4360. https://doi.org/10.1038/s41598-018-22782-z
  32. Adeniji AA, Aremu OS, Babalola OO. 2018. Selecting lipopeptide-producing, Fusarium-suppressing Bacillus spp.: metabolomic and genomic probing of Bacillus velezensis NWUMFkBS10. 5. MicrobiologyOpen 8(6): e00742.
  33. Uqras S, Sezen K, Kati H, Demirbaq Z. 2013. Purification and characterization of the bacteriocin Thuricin Bn1 produced by Bacillus thuringiensis subsp. kurstaki Bn1 from a hazelnut pest. J. Microbiol. Biotechnol. 23: 167-176. https://doi.org/10.4014/jmb.1209.09056
  34. Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an "operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8: 22.

Cited by

  1. Response Surface Optimization of Culture Conditions for Cyclic Lipopeptide MS07 from Bacillus siamensis Reveals Diverse Insights Targeting Antimicrobial and Antibiofilm Activity vol.8, pp.6, 2020, https://doi.org/10.3390/pr8060744
  2. 젓갈산업의 현황 및 발전 방향 vol.53, pp.2, 2020, https://doi.org/10.23093/fsi.2020.53.2.200
  3. Biomanufacturing process for the production of bacteriocins from Bacillaceae family vol.7, 2019, https://doi.org/10.1186/s40643-020-0295-z
  4. Bacillus amyloliquefaciens ALB65 Inhibits the Growth of Listeria monocytogenes on Cantaloupe Melons vol.87, pp.1, 2020, https://doi.org/10.1128/aem.01926-20
  5. Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus vol.16, pp.5, 2021, https://doi.org/10.1371/journal.pone.0251514
  6. Isolation, identification and biocontrol mechanisms of endophytic bacterium D61-A from Fraxinus hupehensis against Rhizoctonia solani vol.158, 2019, https://doi.org/10.1016/j.biocontrol.2021.104621
  7. Anti‐staphylococcal activity of a cyclic lipopeptide, C15‐bacillomycin D, produced by Bacillus velezensis NST6 vol.131, pp.1, 2021, https://doi.org/10.1111/jam.14936
  8. Bacteriocins: Properties and potential use as antimicrobials vol.36, pp.1, 2022, https://doi.org/10.1002/jcla.24093