DOI QR코드

DOI QR Code

Simplified method to design laterally loaded piles with optimum shape and length

  • Received : 2018.11.25
  • Accepted : 2019.03.21
  • Published : 2019.07.25

Abstract

Optimum shape and length of laterally loaded piles can be obtained with different optimization techniques. In particular, the Fully Stress Design method (FSD) is an optimality condition that allows to obtain the optimum shape of the pile, while the optimum length can be obtained through a transversality condition at the pile lower end. Using this technique, the structure is analysed by finite elements and shaped through the FSD method by contemporarily checking that the transversality condition is satisfied. In this paper it is noted that laterally loaded piles with optimum shape and length have some peculiar characteristics, depending on the type of cross-section, that allow to design them with simple calculations without using finite element analysis. Some examples illustrating the proposed simplified design method of laterally loaded piles with optimum shape and length are introduced.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Ahmadi, M.M. and Ahmari, S. (2009), "Finite element modelling of laterally loaded piles in clay", Proceedings of the Institution of Civil Engineering - Geotechnical Engineering, 162(3), 151-163. https://doi.org/10.1680/geng.2009.162.3.151.
  2. Ashour, M. and Norris, G. (2000), "Modelling lateral soil-pile response based on soil-pile interaction", J. Geotech. Geoenviron. Eng., 126(5), 420-428. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(420).
  3. Bartholomew, P. and Morris, A.J. (1976), "A unified approach to fully-stressed design", Eng. Opt., 2(1), 3-15. https://doi.org/10.1080/03052157608960592.
  4. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W. and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", J. Geotech. Geoenviron. Eng., 125(9), 750-759. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750).
  5. Bowles, J.E. (1996), Foundation Analysis and Design, 5th edition, McGraw-Hill, New York, NY, USA.
  6. Briseghella, B., Fenu, L., Feng, Y., Lan, C., Mazzarolo, E. and Zordan, T. (2016), "Optimization Indexes to Identify the Optimal Design Solution", J. Bridge Eng., 21(3), https://doi.org/10.1061/(ASCE)BE.1943-5592.0000838.
  7. Briseghella, B. and Zordan T. (2007), "Integral abutment bridge concept applied to the rehabilitation of a simply supported concrete structure", Struct. Concr., 8(1), 25-33. https://doi.org/10.1680/stco.2007.8.1.25
  8. Briseghella, B. and Zordan T. (2015), "An innovative steelconcrete joint for integral abutment bridges", J. Traff. Transp. Eng. (English Ed.), 2(4), 209-222. https://doi.org/10.1016/j.jtte.2015.05.001.
  9. Briseghella, B., Fenu, L., Feng, Y., Mazzarolo, E. and Zordan, T. (2013). "Topology optimization of bridges supported by a concrete shell", Struct. Eng. Int., 23(3), 285-294. https://doi.org/10.2749/101686613X13363929988214
  10. Briseghella, B., Fenu, L., Lan, C., Mazzarolo, E. and Zordan, T. (2013). "Application of topological optimization to bridge design", J. Bridge Eng., 18(8), 790-800. https://doi.org/10.1061/(ASCE)BE.1943-5592.0000416.
  11. Broms, B.B. (1964), "Lateral resistance of piles in cohesion less soils", ASCE, J. Soil Mech. and Found. Div., 90(3), 123-158. https://doi.org/10.1061/JSFEAQ.0000614
  12. Broms, B.B. (1964), "Lateral resistance of piles in cohesive soils", ASCE, J. of the Soil Mech. and Found. Div., 90(2), 27-64. https://doi.org/10.1061/JSFEAQ.0000611
  13. Brown, D.A. and Shie, C.F. (1990), "Three dimensional finite element model of laterally loaded piles", Comp. Geotech., 10(1), 59-79. https://doi.org/10.1016/0266-352X(90)90008-J.
  14. Caner, A. and Zia, P. (1998), "Behavior and design of link slabs for jointless bridge decks", PCI journal, 43, 68-81 https://doi.org/10.15554/pcij.05011998.68.80
  15. Carbonari, S., Morici, M., Dezi, F., Leoni, G., Nuti, C., Silvestri, F., Tropeano, G. and Vanzi, I. (2012), "Seismic response of viaducts accounting for soil-structure interaction", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, Portugal, September.
  16. Chik, K.H., Abbas, J.M. and Taha, M.R. (2008), "Single pile simulation and analysis subjected to lateral load", Electronic J. of Geotech. Eng., 13.
  17. David, T.K. and Forth, J.P. (2011), "Modelling of soil structure interaction of integral abutment bridges", J. Civil. Eng. Struct. Construct. Architect. Eng., 5(6), 645-650.
  18. Davisson, M.T. (1970), "Lateral Load Capacity of Piles", 49th Annual Meeting of the Highway Research Board, Washington, D.C., U.S.A., January. 104-112.
  19. Elsgolts, L.E. (1980), Differential Equations and the Calculus of Variations, (English Edition), MIR Publishers, Moscow, USSR.
  20. Fenu, L. (2005), "On the characteristics of optimum beams with optimum length surrounded by a Winkler's medium", Struct. Mult. Opt., 30(3), 243-250. https://doi.org/10.1007/s00158-004-0387-y.
  21. Fenu, L. and Madama G. (2006), "Pali multiton caricati lateralmente e con spostamento minimo", Proceedings of the 16-th CTE Conference, Parma, Italy, November.
  22. Fenu, L. and Serra, M. (1995), "Optimum design of beams surrounded by a Winkler's medium", Struct. Opt., 9(2), 132-135. https://doi.org/10.1007/BF01758831.
  23. Fenu, L., Briseghella, B. and Marano G.C. (2018), "Optimum shape and length of laterally loaded piles", Struct. Eng. Mech., 68(1), 121-130. https://doi.org/10.12989/sem.2018.68.1.121.
  24. Fiore, A., Marano, G.C., Greco, R. and Mastromarino, E. (2016), "Structural optimization of hollow-section steel trusses by differential evolution algorithm", J. Steel Struct., 16(2), 411-423. https://doi.org/10.1007/s13296-016-6013-1.
  25. Gandomi, A.H. and Alavi, A.H. (2012), "A new multi-gene genetic programming approach to non-linear system modelling. Part II: Geotechnical and earthquake engineering problems", Neural Comput. Applic., 21, 189-201. https://doi.org/10.1007/s00521-011-0735-y.
  26. Greco, R., Lucchini, A. and Marano, G.C. (2015), "Robust design of tuned mass dampers installed on multi-degree-of-freedom structures subjected to seismic action", Eng. Opt., 47(8), 1009-1030. https://doi.org/10.1080/0305215X.2014.941288.
  27. Greco, R. and Marano, G.C. (2015), "Identification of parameters of Maxwell and Kelvin-Voigt generalized models for fluid viscous dampers", JVC/J. Vib. Control, 21(2), 260-274. https://doi.org/10.1177/1077546313487937.
  28. Greco, R., Marano, G.C. and Fiore, A. (2016), "Performance-cost optimization of Tuned Mass Damper under low-moderate seismic actions", Struct. Design Tall Special Build., 25(18), 1103-1122. https://doi.org/10.1002/tal.1300.
  29. Haftka, R.T. and Gurdal, Z. (1993), Elements of Structural Optimization, Kluwer Academic Publishers, Dordrecht, Boston, London.
  30. Han, J. and Frost, J.D. (2000), "Load-deflection response of transversely isotropic piles under lateral loads", Int. J. for Num. and Anal. Meth. in Geomech., 24(5), 509-529. https://doi.org/10.1002/(SICI)1096-9853(20000425)24:5<509::AID-NAG79>3.0.CO;2-9
  31. Imancli, G., Kahyaoglu, M.R., Ozden, G., and Kayalar, A.S. (2009), "Performance functions for laterally loaded single concrete piles in homogeneous clays", Struct. Eng. Mech., 33(4), 529-537. http://doi.org/10.12989/sem.2009.33.4.529.
  32. Juirnarongrit, T. and Ashford, S.A. (2004), "Lateral load behaviour of cast-in-drilled-hole piles in weakly cemented sand", Transp. Res. Record. J. Transp. Res. Board, 1868, 190-198. https://doi.org/10.3141/1868-20.
  33. Kavitha, P.E., Beena, K.S. and Narayanan, K.P. (2016), "A review on soil-structure interaction analysis of laterally loaded piles", Innov. Infrastruct. Solut. 1(14). https://doi.org/10.1007/s41062-016-0015-x.
  34. Kim, W. and Laman, J.A. (2013), "Integral abutment bridge behavior under uncertain thermal and time-dependent load", Struct. Eng. Mech., 46(1), 53-73. https://doi.org/10.12989/sem.2013.46.1.053.
  35. Kim, W., Laman, J.A. and Park, J.Y. (2014), "Reliability-based design of prestressed concrete girders in integral Abutment Bridges for thermal effects", Struct. Eng. Mech., 50(3), 305-322. https://doi.org/10.12989/sem.2014.50.3.305.
  36. Kim, Y. and Jeong, S. (2011), "Analysis of soil resistance on laterally loaded piles based on 3d soil-pile interaction", Comp. Geotech., 2, 248-257. https://doi.org/10.1016/j.compgeo.2010.12.001.
  37. Kok, S.T. and Huat B.B.K. (2008) "Numerical modelling of laterally loaded piles", American J. Appl. Sc., 5(10), 1403-1408. https://doi.org/10.3844/ajassp.2008.1403.1408
  38. Krishnamoorthy, A. and Sharma, K.J. (2008), "Analysis of single and group of piles subjected to lateral load using finite element method", Proceedings of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics (IACMAG), Goa, India, October. 3111-3116.
  39. Lan, C., Briseghella, B., Fenu, L., Xue, J. and Zordan, T. (2017), "The optimal shapes of piles in integral abutment bridges", J. Traff. Transp. Eng. (English. Ed.), 4(6), 576-593. https://doi.org/10.1016/j.jtte.2017.11.001.
  40. Lavorato, D., Nuti, C., Santini, S., Briseghella, B. and Xue, J. (2015), "A repair and retrofitting intervention to improve plastic dissipation and shear strength of Chinese RC bridges", IABSE Conference, Geneva 2015: Structural Engineering: Providing Solutions to Global Challenges, Geneva, Switzerland, September. 1762-1767.
  41. Marano, G.C. and Greco, R. (2011), "Optimization criteria for tuned mass dampers for structural vibration control under stochastic excitation", JVC/J. Vibration and Control, 17(5), 679-688. https://doi.org/10.1177/1077546310365988
  42. Marano, G.C., Greco, R., Quaranta, G., Fiore, A., Avakian, J. and Cascella, D. (2013), "Parametric identification of nonlinear devices for seismic protection using soft computing techniques", Adv. Mat. Res., 639-640(1) 118-129. https://doi.org/10.4028/www.scientific.net/AMR.639-640.118.
  43. Marano, G.C., Trentadue, F. and Petrone, F. (2014). "Optimal arch shape solution under static vertical loads", Acta Mechanica, 225(3), 679-686. https://doi.org/10.1007/s00707-013-0985-0.
  44. Marano, G.C., Trentadue, F. and Greco, R. (2006), "Optimum design criteria for elastic structures subject to random dynamic loads", Eng. Optimization, 38(7), 853-871. https://doi.org/10.1080/03052150600913028.
  45. Marano, G.C., Trentadue, F. and Greco, R. (2007), "Stochastic optimum design criterion of added viscous dampers for buildings seismic protection", Struct. Eng. Mech., 25(1), 21-37. https://doi.org/10.12989/sem.2007.25.1.021.
  46. McGann, C.R. and Arduino, P. (2011), Laterally-Loaded Pile Foundation; OpenSeesWiki. http://opensees.berkeley.edu/wiki/index.php/Laterally-Loaded_Pile_Foundation.
  47. McGann, C.R., Arduino, P. and Mackenzie-Helnwein, P. (2011), "Applicability of conventional p-y relations to the analysis of piles in laterally spreading soil", J. Geotech. Geoenviron. Eng., 137(6), 557-567. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000468.
  48. Myskis, A.D. (1979), Advanced Mathematics for Engineers, (English Edition), MIR Publishers, Moscow, USSR.
  49. Nakhaee, M. and Johari, A. (2013), "Genetic based modelling of undrained lateral load capacity of piles in cohesion soils", Global J. Sci. Eng. Technology, 5, 123-133.
  50. Ng, K.W., Garder J. and Sritharan, S. (2015), "Investigation of ultra high performance concrete piles for integral abutment bridges", Eng. Str., 105, 220-230. https://doi.org/10.1016/j.engstruct.2015.10.009.
  51. Palmer, L.A. and Thompson, J.B. (1948), "The earth pressure and deflection along the embedded lengths of piles subjected to lateral thrusts", Proceedings of the 2nd International Conference on Soil Mechanics and Foundation Engineering, Rotterdam, The Netherlands. June.
  52. Patnaik, S.N. and Hopkins, D.A. (1998), "Optimality of a fully stressed design", Comp. Methods Appl. Mech. Eng., 165(1-4), 215-221. https://doi.org/10.1016/S0045-7825(98)00041-3
  53. Phanikanth, V.S., Choudhury, D. and Rami Reddy, G. (2010), "Response of single pile under lateral loads in cohesion less soils", Electronic J. Geotech. Eng., 15.
  54. Poulos, H.G. and Davis, E.H. (1980), Pile Foundation Analysis and Design, John Wiley and Sons, Inc., New York, NY, USA.
  55. Quaranta, G., Marano, G.C., Greco, R. and Monti, G. (2014), "Parametric identification of seismic isolators using differential evolution and particle swarm optimization", Appl. Soft Comput. J., 22, 458-464. https://doi.org/10.1016/j.asoc.2014.04.039.
  56. Reese, L.C. and Desai, C.S. (1977) "Laterally loaded piles", Numerical Methods in Geotechnical Engineering, McGraw-Hill Book Company, New York, USA. 297-325.
  57. Wakai, A., Gose, S. and Ugai, K. (1999), "3D Elasto-plastic finite element analyses of pile foundations subjected to lateral loading", Soils and Foundations, 39(1), 97-111. https://doi.org/10.3208/sandf.39.97
  58. Winkler, E. (1867), Die Lehre von der Elastizitat und Festigkeit. Verlag Dominicus, Prague, Czech Republic.
  59. Xu, Z., Chen, B., Zhuang, Y., Tabatabai, H. and Huang, F. (2017), "Rehabilitation and retrofitting of a multispan simply-supported adjacent box girder bridge into a jointless and continuous structure", J. Performance Construct. Facilities, 32(1), https://doi.org/10.1061/(ASCE)CF.1943-5509.0001107.
  60. Yang, Z. and Jeremic, B. (2002), "Numerical analysis of pile behaviour under lateral loads in layered elastic-plastic soils", J. Numer. Analyt. Methods Geo. Mech., 26(14), 1-31. https://doi.org/10.1002/nag.250.
  61. Zordan, T. and Briseghella, B. (2007), "Attainment of an integral abutment bridge through the refurbishment of a simply supported structure", Struct. Eng. Int., 17(3), 228-234. https://doi.org/10.2749/101686607781645824.
  62. Zordan, T., Briseghella, B. and Lan, C. (2011), "Parametric and pushover analyses on integral abutment bridge", Eng. Struct., 33(2), 502-515. https://doi.org/10.1016/j.engstruct.2010.11.009.
  63. Zordan, T., Briseghella, B. and Mazzarolo, E. (2010), "Bridge structural optimization through step-by-step evolutionary process", Struct. Eng. Int., 20(1), 72-78. https://doi.org/10.2749/101686610791555586.
  64. Zordan, T., Briseghella, B. and Lan C. (2011), "Analytical formulation for limit length of integral abutment bridges", Struct. Eng. Int., 21(3), 304-310. https://doi.org/10.2749/101686611X13049248220654

Cited by

  1. Assessment of ultimate load of drilled shaft socketed in rocks based on pile load tests vol.26, pp.3, 2019, https://doi.org/10.12989/gae.2021.26.3.215