DOI QR코드

DOI QR Code

In-decorated NiO Nanoigloos Gas Sensor with Morphological Evolution for Ethanol Sensors

  • Yi, Seung Yeop (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Song, Young Geun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Gwang Su (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
  • Received : 2019.07.23
  • Accepted : 2019.07.31
  • Published : 2019.07.31

Abstract

We investigated the facile and effective strategy for sensitive and selective $C_2H_5OH$ sensors based on the In-decorated NiO nanoigloos. The In-decorated NiO nanoigloos is fabricated by RF sputtering using 750 nm-diameter polystyrene beads using a soft-template. The morphological evolution based on the Van der Drift model was generated through a heterojunction between In metal and NiO, resulting in a pyramidal rough surface. Upon decorating the In on the NiO surface, high sensitivity and selectivity to $C_2H_5OH$ were observed, and gas sensing mechanism was demonstrated by a high surface-to-volume and double Schottky barrier. We are confident that the method presented in this study will have a significant impact on the fabrication of effective nanostructures and their application for the gas sensors.

Keywords

HSSHBT_2019_v28n4_231_f0001.png 이미지

Fig. 1. Schematic of fabrication procedures of In-decorated NiO nanoigloos.

HSSHBT_2019_v28n4_231_f0002.png 이미지

Fig. 2. SEM images of (a) PS beads, and the (b) bare and (c) In-decorated NiO nanoigloos. Cross-sectional images of (b) and (c) are (d) and (e), respectively. (f) XRD of bare and In-decorated NiO nanoigloos.

HSSHBT_2019_v28n4_231_f0003.png 이미지

Fig. 3. Response transients of the (a) bare and (b) In-decorated NiO nanoigloos to 5 ppm C2H5OH as a function of operating temperature from 250 to 400 ℃. (c) Response as a function of operating temperature from 250 to 400 ℃. Response of the (d) bare and (e) In-decorated NiO nanoigloos to 5 ppm C2H5OH at 300 ℃. (f) Polar plots depicting responses to various gases (5 ppm) at 300 ℃.

HSSHBT_2019_v28n4_231_f0004.png 이미지

Fig. 4. Schematic illustrations of (a) stepwise C2H5OH sensing procedure in the near surface region; (b) the scheme of double Schottky barrier model.

References

  1. https://www.who.int/(Retrieved on July. 16, 2019).
  2. P. Patnaik, "A comprehensive guide to the hazardous properties of chemical substances", John wiley & sons, inc., New York, pp. 137-139, 2007.
  3. G.Korotcenkov, "The Role of Morphology and Crystallographic Structure of Metal Oxides in Response of Conductometric-type Gas Sensors", Mater. Sci. Eng. R. Rep., Vol. 61, No. 1-6, pp.1-39, 2008. https://doi.org/10.1016/j.mser.2008.02.001
  4. N. Barsan, D. Koziej, and U. Weimar, "Metal Oxide-based Gas Sensor Research: How to?", Sens. Actuators B, Vol. 121, No. 1, pp. 18-35, 2007. https://doi.org/10.1016/j.snb.2006.09.047
  5. Zhang, X. Dong, X. Cheng, Y. Xu, X. Zhang, and L. Huo,"Enhanced gas-sensing properties for trimethylamine at low temperature based on $MoO_3/Bi_2Mo_3O_{12}$ hollow microspheres", ACS Appl. Mater. Interfaces, Vol. 11, pp. 11755-11762, 2019. https://doi.org/10.1021/acsami.8b22132
  6. Z. Lou, F. Li, J. Deng, L. Wang, and T. Zhang, "Branch-like hierarchical heterostructure (${\alpha}-Fe_2O_3/TiO_2$): a novel sensing material for trimethylamine gas sensor", ACS Appl. Mater. Interfaces, Vol. 5, pp. 12310-12316, 2013. https://doi.org/10.1021/am402532v
  7. P. K. Roy, G. Haider, T. C. Chou, K. H. Chen, L. C. Chen, Y. F. Chen, and C. T. Liang, "Ultrasensitive gas sensors based on vertical graphene nanowalls/SiC/Si heterostructure", ACS Sens., Vol. 4, pp. 406-412, 2019. https://doi.org/10.1021/acssensors.8b01312
  8. D. Mowbray, J. I. Martinez, J. Garcia Lastra, K. S. Thygesen, K. W. Jacobsen, "Stability and Electronic Properties of $TiO_2$ Nanostructures With and Without B and N Doping", J. Phys. Chem. Lett., Vol. 113, pp. 12301-12308, 2009. https://doi.org/10.1021/jp904672p
  9. Y. G. Song, J. Y. Park, J. M.Suh, Y. S.Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B. K. Ju, and C. Y. Kang, "Heterojunction based on Rh-decorated $WO_3$ Nanorods for Morphological Change and Gas Sensor Application using Transition Effect", Chem. Mater., Vol. 31, pp. 207-215, 2019. https://doi.org/10.1021/acs.chemmater.8b04181
  10. J. M. Suh, Y. S. Shim, D. H. Kim, W. Sohn, Y. Jung, S. Y. Lee, S. Choi, Y. H. Kim, J. M. Jeon, and K. Hong, "Synergetically Selective Toluene Sensing in Hematite?Decorated Nickel Oxide Nanocorals", Mater. Technol., Vol. 2, No. 3, pp. 1600259(1)-1600259(10), 2017.
  11. C. V. Thompson, "Structure Evolution during Processing of Polycrystalline Films", Annu. Rev. Mater. Sci., Vol. 30, pp. 159-190, 2000. https://doi.org/10.1146/annurev.matsci.30.1.159
  12. A. Van der Drift, "Evolutionary Selection, a Principle Governing Growth Orientation in Vapour-deposited Layers", Philips Res. Rep., Vol. 22, pp. 267-xxx, 1967.
  13. H. Pan and Y. P. Feng, "Semiconductor Nanowires and Nanotubes: Effects of Size and Surface-to-volume Ratio", ACS Nano, Vol. 2, pp. 2410-2414, 2008. https://doi.org/10.1021/nn8004872
  14. Z. Wang, "Novel Nanostructures of ZnO for Nanoscale Photonics, optoelectronics, piezoelectricity, and sensing", Appl. Phys. A Mater., Vol. 88, pp. 7-15, 2007. https://doi.org/10.1007/s00339-007-3942-8
  15. I. Petrov, P. Barna, L. Hultman, and J. Greene, "Microstructural Evolution during Film Growth", J. Vac. Sci. Technol. A, Vol. 21, pp. S117-S128, 2003. https://doi.org/10.1116/1.1601610
  16. S. Y. Yi, Y. G. Song, J. Y. Park, J. M. Suh, G. S. Kim, Y. Shim, S. Kim, J. M. Yuk, H. W. Jang, B. Ju, and C. Kang, "Morphological Evolution Induced through Heterojunction of W-decorated NiO Nanoigloos: Synergistic Effect on High-performance Gas sensors", ACS Appl. Mater. Interfaces, Vol. 11, pp. 7529-7538, 2019. https://doi.org/10.1021/acsami.8b18678
  17. G. V. Samsonov, The Oxide Handbook, Springer Science & Business Media, New York, pp. 36-47, 2013.
  18. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide Semiconductor Gas Sensors" Catal. Surv. Asia, Vol. 7, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  19. N. Yamazoe, "New Approaches for Improving Semiconductor Gas Sensors", Sens. Actuators B, Vol. 5, pp. 7-19, 1991. https://doi.org/10.1016/0925-4005(91)80213-4