DOI QR코드

DOI QR Code

Developing Vehicle-launched Smoke Grenade M&S of Moderate-resolution for Applications in Engagement Simulation

교전시뮬레이션에의 활용을 위한 적정해상도의 차량 연막유탄 M&S 개발

  • Received : 2018.12.31
  • Accepted : 2019.05.20
  • Published : 2019.06.30

Abstract

Smoke grenade is the most primary counteract of tank for its survival against threats, therefore a number of related researches and developments of M&S are being conducted. In this research, a vehicle-launched smoke grenade model is developed, that covers the essential engineering-level parameters, and also is applicable to engagement-level simulations because of its unheavy computational load. First of all, input parameters of the model were determined to include the principal factors from engineering to engagement level. In the model, smoke and LOS are modeled as simple figures, a disk and a line, so that the computational load is not as much as that of particle-model-based M&Ss. A test simulation is also carried out to analyze the effect of smoke grenade for a tank. This model is to be inserted into a basic tank model on AddSIM. The users of AddSIM will be able to simulate various scenarios including smoke grenades.

차량 연막 유탄은 전차에서 적의 탐지체계를 교란하기 위해 가장 우선으로 운용하는 방호 장비로, 전차의 교전효과 분석 시 필수적인 요소라고 할 수 있다. 본 연구에서는 주요한 공학급 파라미터를 포함하면서도, 연산 부하가 크지 않아 교전 시뮬레이션에 활용하기 적절한 차량 연막 유탄 모델을 개발하였다. 먼저 교전급에서 공학급까지의 주요한 입력 파라미터를 포괄하여, 다양한 조합 모의를 가능케 하였다. 내부 모델은 간단한 연산을 사용함으로써, 여러 개체가 포함되는 교전 시뮬레이션에 적용하기 쉽도록 하였다. 연막운과 가시선을 각각 원반과 선분 형상으로 모델링하여, 기존 연막 M&S들에서 활용한 입자모델보다 비교적 낮은 해상도로 모의하였다. 또한, 테스트 시뮬레이션을 수행하여 전차의 연막 유탄 운용 효과를 분석해 보았다. 본 모델을 사용함으로써 운용개념 수립에서부터 연구개발까지 넓은 해상도 범위를 포괄 가능하다는 점을 확인할 수 있었다. 본 모델은 추후 국과연 2본부 4부에서 개발한 AddSIM 버전 3.0 환경에서, 전차 및 전투차량 모델에 삽입될 것이며, AddSIM의 사용자들은 이 모델들을 활용하여 연막 유탄을 이용하는 다양한 교전 시나리오를 구성할 수 있을 것이다.

Keywords

SMROBX_2019_v28n2_59_f0001.png 이미지

Fig. 1. Explosion of smoke grenades launched from K2 tanks (Ahn, 2017)

SMROBX_2019_v28n2_59_f0002.png 이미지

Fig. 2. Definition of variables for geometrical smoke & LOS models (w.r.t. global ENU frame of reference)

SMROBX_2019_v28n2_59_f0003.png 이미지

Fig. 3. Definition of variables for geometrical smoke & LOS models (w.r.t. smoke-fixed local frame of reference

SMROBX_2019_v28n2_59_f0004.png 이미지

Fig. 5. Trajectories of the centers of smokes, tank and threat during the simulation

SMROBX_2019_v28n2_59_f0005.png 이미지

Fig. 6. Simulation results: (a) Smoke radius & thickness, (b) Average concentration of agent, (c) Screened length of LOS, (d) Transmittance level (0:screened / 1:not screened)

Table 1. Input parameters of suggested model

SMROBX_2019_v28n2_59_t0001.png 이미지

Table 2. Output parameters of suggested model

SMROBX_2019_v28n2_59_t0002.png 이미지

Table 3. Interior variables of suggested model

SMROBX_2019_v28n2_59_t0003.png 이미지

Table 4. Equations of figures (w.r.t. local frame of reference)

SMROBX_2019_v28n2_59_t0004.png 이미지

Table 5. The possible cases(Case #1 - #8) for spatial relativity of figures, and corresponding results of screened segments

SMROBX_2019_v28n2_59_t0005.png 이미지

Fig. 4. Flowchart to identify the spatial relativity of figures

SMROBX_2019_v28n2_59_t0006.png 이미지

Table 7. Values of input parameters for test scenario

SMROBX_2019_v28n2_59_t0007.png 이미지

Table 6. Positions of intersections of figures (w.r.t. local frame of reference)

SMROBX_2019_v28n2_59_t0008.png 이미지

References

  1. Ahn, S.H. (2017), "Spot Coverage of Assault River Crossing of Army Division 20", Kookbangilbo.
  2. Cho, K.G. (2007), "Software to analyze the charging effectiveness of the multi-band screening smoke grenade", Technical Report, Agency for Defense Development.
  3. Cho, W.H. and N.G. Kim (2007) "Feasibility Study of a Pyrotechnic Active RP/IR Obscuring Smoke", Proceedings of Korea Institute of Military Science and Technology 2007, 302-306.
  4. Go, E.M., D.S. Hong and M.J. Choi (1992) "The general studies on TOP or absorption coefficiency measurement of smoke", Technical Report, Agency for Defense Development.
  5. Hwang, J.S., C.K. Kim, W.H. Cho and N.G. Kim (2014) "Composition Design of Multi-spectral Screenign Burning Smoke and Development of Test and Evaluation Methods", Proceedings of Korea Institute of Military Science and Technology 2014, 1153-1154.
  6. Kim, D.H., H.S. Oh, S.J. Lee, S.N. Yang, Y.L. Rhee, J.H. Park, S.J. Lee and S.J. Min (2018), "Improving the AddSIM (Advanced distributed SIMulation environment) for an integrated engagement simulation", The 11th International Army Modeling & Simulation Education Conference.
  7. Kim, D.H., S.J. Lee, Y.L. Rhee and H.S. Oh (2018), "Architecture design of Base System Model for engagement simulation", Proceedings of The Korea Society for Simulation 2018.
  8. Korea Institute for Defense Analyses(KIDA) (2013), "Documentation for Logics of Army Weapon Effectiveness Analysis Model(AWAM)", 65-80.
  9. Lee, E.H. and J.K. Lim (2005), "Simulation software of the soft-kill active protection system", Technical Report, Agency for Defense Development.
  10. Oh, H.S., S.J. Park, S.J. Lee, D.H. Kim, J.H. Park and S.J. Lee (2016), "Plan of Developing Component Model Library of Weapon Systems", The 9th International Army Modeling & Simulation Education Conference.
  11. Park, G.C., J.S. Ha and K.G. Cho (2010), "The Development of Soft-Kill and analysis of APS (Active Protection System) for ground vehicle", Technical Report, Agency for Defense Development.
  12. Park, J.S., D.G. Joung and D.S. Jeon (2016), "Performance Analysis of Infrared Smoke Screen of 3rd Generation Anti-Tank Missile", Proceedings of Korea Institute of Military Science and Technology 2016, 1729-1730.
  13. Republic of Korea Army Headquarters (2010), "Utilization of smoke grenade equipment", Field Manual.
  14. Shim, B.S. (2005), "A developmental report of the grenade aunching system for the FTR of KNMBT", Technical Report, Agency for Defense Development.
  15. Sim, W.S. (2011), "Technical description of NBC_ RAMS Model engine", Technical Report, Agency for Defense Development.
  16. Wetmore, A. and S.D. Ayres (2000), "COMBIC, Combined Obscuration Model for Battlefield Induced Contaminants: Volume 1 Technical Documentation and Users Guide", Army Research Laboratory, Adelphi, MD.
  17. Wetmore, A. and S.D. Ayres (2000), "COMBIC, Combined Obscuration Model for Battlefield Induced Contaminants: Volume 2 Appendices", Army Research Laboratory, Adelphi, MD.