DOI QR코드

DOI QR Code

Effects of Different Roughage to Concentrate Ratios on the Changes of Productivity and Metabolic Profiles in Milk of Dairy Cows

조사료와 농후사료의 급여 비율이 착유유의 우유생산성과 대사산물에 미치는 영향

  • 엄준식 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 이신자 (경상대학교 농업생명과학연구원&중점연구소) ;
  • 이수경 (경상대학교 농업생명과학연구원) ;
  • 이예준 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 김현상 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 최유영 (경상대학교 응용생명과학부(BK21Plus)) ;
  • 기광석 (국립축산과학원 낙농과) ;
  • 정하연 (국립축산과학원 낙농과) ;
  • 김언태 (국립축산과학원 낙농과) ;
  • 이상석 (순천대학교 동물자원과학과) ;
  • 정창대 (순천대학교 동물자원과학과) ;
  • 이성실 (경상대학교 응용생명과학부(BK21Plus), 농업생명과학연구원&중점연구소)
  • Received : 2018.07.30
  • Accepted : 2018.11.26
  • Published : 2019.05.31

Abstract

This study was conducted to evaluate roughage to concentrate ratio on the changes of productivity and metabolic profiling in milk. Six lactating Holstein cows were divided into two groups, T1 group was fed low-concentrate diet (Italian ryegrass to concentrate ratio = 8:2) and T2 group was fed high-concentrate diet (Italian ryegrass to concentrate ratio = 2:8). Milk samples were collected and its components and metabolites were analyzed by 1H-NMR (Nuclear magnetic resonance). The result of milk components such as milk fat, milk protein, solids-not-fat, lactose and somatic cell count were not significantly different between two groups. In carbohydrate metabolites, trehalose and xylose were significantly higher (P<0.05) in T1 group, however lactose was not significantly different between two groups. In amino acid metabolites, glycine was the highest concentration however, there was no significant difference observed between two groups. Urea and methionine were significantly higher (P<0.05) in the T2 group. In lipid metabolites, carnitine, choline and O-acetylcarnitine there were no significant difference observed between the two groups. In benzoic acid metabolites, tartrate was significantly higher (P<0.05) in T2 group. In organic acid metabolites, acetate was significantly higher (P<0.05) in T1 group and fumarate was significantly higher (P<0.05) in T2 group. In the other metabolites, 3-methylxanthine was only significantly higher (P<0.05) in T2 group and riboflavin was only significantly higher (P<0.05) in T1 group. As a result, milk components were not significantly different between two groups. However, metabolites concentration in the milk was significantly different depends on roughage to concentrate ratio.

조사료와 농후사료의 급여 비율이 우유생산성과 대사산물에 미치는 영향에 대한 연구를 수행하였다. 공시축은 국립축산과학원 축산자원개발부 홀스타인 6두를 이용하여 3두는 이탈리안 라이그라스와 농후사료 급여비율을 8:2, 나머지 3두는 2:8로 하여 1일 2회 분할 급여하여 원유 생산량, 유성분 및 1H-NMR를 이용한 원유 내 대사산물 분석을 실시하였다. 원유 생산량, 성분 분석 및 체세포수는 두 급여 간 유의적(P>0.05)인 차이가 나타나지 않았지만, 급여 비율별 원유 생산량 및 유성분 변화는 선행연구 결과와 유사하였다. Carbohydrate 계열 대사산물 trehalose와 xylose는 T1 급여구에서 유의적(P<0.05)으로 높았으나, lactose 함량은 두 급여 간 유의적(P>0.05)인 차이가 나타나지 않았다. Amino acid 계열 대사산물 중 glycine 함량이 가장 높았지만, 두 급여 간 유의적(P>0.05)인 차이가 없었으며, Urea와 methionine는 T2 급여구에서 유의적(P<0.05)으로 높았다. Lipid acid 계열 대사산물 carnitine, choline 및 O-acetylcarnitine은 두 급여 간 유의적(P>0.05)인 차이는 나타나지 않았다. Benzoic acid 계열 대사산물 tartrate는 T2 급여구에서 유의적(P<0.05)으로 높았다. Organic acid 계열 대사산물 acetate는 T1 급여구에서 유의적(P<0.05)으로 높았으며, fumarate는 T2 급여구에서 유의적(P<0.05)으로 높았다. 기타대사산물로 분류되어 있는 3-methylxanthine은 T2 급여구에서 유의적(P<0.05)으로 높았으며, 비타민 B2로 불리는 riboflavin은 T1 급여구에서 유의적(P<0.05)으로 높았다. 이번 연구결과에서는 이탈리안 라이그라스와 농후사료 급여 비율을 달리하였을 때 유생산량, 유지방, 유단백질, 유당, 무지고형분 및 체세포 수 분석 결과 유의적(P>0.05)인 차이가 나타나지 않았지만, 원유 내 여러 대사산물은 유의적(P<0.05)인 차이가 나타나는 것을 확인할 수 있었다. 국외의 1H-NMR을 이용한 원유 내 대사산물을 비교하였을 때 acetate, furmarate 및 lactose 등과 같은 주요 대사산물의 정량화를 확인하였다. 또한 국내의 원유 내 대사산물 연구에 기초적 자료로 쓰일 수 있을 것이며, 추후 질병과 직접적 상관관계에 있는 대사산물에 대한 연구가 이루어진다면 착유우의 질병 예방에 도움을 줄 수 있을 것으로 사료된다.

Keywords

References

  1. Annison, E. F., R. Bickerstaffe, and J. L. Linzell. 1974. Glucose and fatty acid metabolism in cows producing milk of low fat content. J. Agric. Sci. 82: 87-95. https://doi.org/10.1017/S0021859600050255
  2. Bartely, E. E. 1976. Bovine saliva: production and function of buffers in ruminant physiology and matabolism. Church and Dwight Co., Inc., New York.
  3. Chung, S. J., C. R. Lim, and B. S. Noh. 2008. Understanding the sensory characteristics of various type of milk using descriptive analysis and electronic nose. Korean J. Food Sci. Technol. 40(1): 47-55.
  4. Choi, B. R. 2004. Nutritional supplementing ways on feeding and management of dairy cow. Journal of Veterinary Clinics, Proceedings of the congress Korean society of veterinary clinics. pp. 5-22.
  5. Duncan, D. B. 1955. Multiple range and multiple F test. Biometrics. 11: 1-6. https://doi.org/10.2307/3001478
  6. Ha, J. K., S. S. Lee, Y. S. Moon, C. H. Kim, S. W. Seo, M. K. Beak, S. S. Lee, S. Y. Lee, W. S. Lee, J. S. Jang, and N. J. Choi. 2013. Ruminant Nutrition and Physiology. Seoul National University press.
  7. Han, I. K., J. K. Ha, T. H. Moon, S. S. Lee, C. H. Kim, and H. D. Kim. 1996. The effects of source and level of forage on VFA production and fermentation characteristics in the rumen of sheep. Kor. J. Anim. Nutr. Feed. 20(1): 77-86.
  8. Henry, E. C. 2006. Milk and milk product. Tata Mc Graw Hill Publishing Company Limited.
  9. Hettinga, K. A., H. J. F. van Valenberg, T. J. G. M. Lam, and A. C. M. van Hooijdonk. 2009. The origin of the volatile metabolites found in mastitis milk. Vet. Microbial. 137: 384-387. https://doi.org/10.1016/j.vetmic.2009.01.016
  10. Hong, Y. S. 2014. Nutritional metabolomics. J. Korean. Soc. Food. Sci. Nutr. 43(2): 179-186. https://doi.org/10.3746/jkfn.2014.43.2.179
  11. Jung, S. W. 2017. Seven wonders of sugar. J. Korean. Soc. Food. Sci. Nutr. 22(1): 29-32.
  12. Ki, K. S., D. H. Lim, T. I. Kim, S. M. Park, H. J. Lim, and K. C. Choi. 2016. Comparison of nutritive values of diets collected from organic dairy farms and conventional dairy farms from Chungnam and Jeonbuk in Korea. J. Kor. Grassl. Forage Sci. 36(1): 29-33. https://doi.org/10.5333/KGFS.2016.36.1.29
  13. Kim, K. H., E. J. Hong, S. J. Park, J. W. kang, and B. S. Noh. 2011. Pattern recognition analysis for volatile compounds of the whole, skim, UHT-, HTST-, and LTLT-milk under LED irradiations. Korean J. Food Sci, Ani. Resour. 31(4): 596-602. https://doi.org/10.5851/kosfa.2011.31.4.596
  14. Ko, M. J., D. S. Kim, S. Y. Jeong, B. Kim, O. D. Kang, S. C. Lee, and W. S. Lee. 2014. The effect of sodium bicarbonate and liquid buffer on milk yield, milk composition and blood metabolites of Holstein dairy cows.
  15. Korea dairy committee. 2016. Dairy statistics yearbook.
  16. Lawrence, D. C., M. O'Donovan, T. M. Boland, E. Lewis, and E. Kennedy. 2015. The effect of concentrate feeding amount and feeding strategy on milk production, dry matter intake, and energy partitioning of autumn-calving Holstein-Friesian cows. J. Dairy. Sci. 98(1): 338-348. https://doi.org/10.3168/jds.2014-7905
  17. Lee, B. H., J. G. Nejad, H. S. Kim, and K. I. Sung. 2013. Effect of forage feeding level on the milk production characteristics of Holstein lactating cows. J. Kor. Grassl. Forage Sci. 33(1): 45-51. https://doi.org/10.5333/KGFS.2013.33.1.45
  18. Lee, J. M., I. S. Nam, and J. H. Ahn. 2008. Effects of supplementation of ruminally protected amino acids on in vitro ruminal parameters and milk yield and milk composition of dairy cows in mid-lactation. J. Anim. Sci. & Technol. (Kor.). 50(2): 199-208. https://doi.org/10.5187/JAST.2008.50.2.199
  19. Li, Q., Z. Yu, D. Zhu, X. Meng, X. Pang, Y. Liu, R. Frew, H. Chen, and G. Chen. 2016. The application of NMR-based milk metabolite analysis in milk authenticity identification. J. Sci. Food. Agric. 97: 2875-2882. https://doi.org/10.1002/jsfa.8118
  20. Maher, A. D., B. Hayes, B. Cocks, L. Marett, W. J. Wales, and S. Rochfort. 2013. Latent biochemical relationships in the blood-milk axis of dairy cows revealed by statistical integration of $^{1}H$ NMR spectroscopic data. J. Proteome. Res. 12(3): 1428-1435. https://doi.org/10.1021/pr301056q
  21. Mazzei, P. and A. Piccolo. 2018. NMR-based metabolomics of water-buffalo milk after conventional or biological feeding. Chem. Biol. Techol. Agric. 5: 3. https://doi.org/10.1186/s40538-017-0116-6
  22. Park, H. J. and J. H. Lee. 2012. Transcriptional analysis responding to propanol stress in Escherichia coil. J. Life. Sci. 22(3): 417-427. https://doi.org/10.5352/JLS.2012.22.3.417
  23. Ramautar, R., Govert W. Somsen, and Gerhardus J. de Jong. 2015. CE-MS for metabolomics: Developments and applications in the period 2012-2014(Review). Electrophoresis. 36: 212-224. https://doi.org/10.1002/elps.201400388
  24. Rhie, S. G. and E. K. Lee. 2015. Milk and dairy intake and acceptability in fifth- and sixth-graders in Hwaseong, Korea. Korean. J. Community. Living. Sci. 26(3): 499-509. https://doi.org/10.7856/kjcls.2015.26.3.499
  25. Ryu, S. Y., H. J. R, B. S. Noh, S. Y. Kim, D. K. Oh, W. J. Lee, J. R. Yoon, and S. S. Kim. 2003. Effects of various sugars including tagatose and their molar concentrations on the maillard browning reaction. Korean J. Food Sci. Technol. 35(5): 898-904.
  26. Sundekilde, Ulrik K., P. D. Frederiksen, M. R. Clausen, L. B. Larsen, and H. C. Bertram. 2011. Relationship between the metabolite profile and technological properties of Bovine milk from two dairy breeds elucidated by NMR-based metabolomics. J. Agric. Food. Chem. 59: 7360-7367. https://doi.org/10.1021/jf202057x
  27. Sundekilde, Ulrik K., Lotte B. Larsen, and Hanne C. Bertram. 2013. NMR-based milk metabolomics. 2013. Metabolites. 3(2): 204-222. https://doi.org/10.3390/metabo3020204
  28. Sundekilde, Ulrik K., F. Gustavsson, Nina A. Poulsen, M. Glantz, M. Paulsson, Lotte B. Larsen, and Hanne C. Bertram. 2014. Association between the bovine milk metabolome and rennet-induced coagulation properties of milk. J. Dairy. Sci. 97: 6076-6084. https://doi.org/10.3168/jds.2014-8304
  29. Son J. K., C. Y. Choe, S. R. Cho, H. J. Lim, S. J. Park, K. S. Baek, S. B. Kim, E. G. Kwon, Y. S. Jung, N. H. Bok, and D. S. Son. 2011. Relationship between transferable embryos and blood urea nitrogen, glucose and total cholesterol concentration in Hanwoo donors. Reprod. Dev. Biol. 35(3): 335-339.
  30. Wishart David S. 2008. Metabolomics: applications to food science and nutrition research (Review). Trends. Food. Sci. Technol. 19: 482-493. https://doi.org/10.1016/j.tifs.2008.03.003
  31. Won, J. I., C. K. Dang, H. J. Lim, Y. S. Jung, S. K. Im, and H. B. Yoon. 2016. Estimation of genetic parameter for milk production and linear type traits in Holstein dairy cattle in Korea. J. Agric. Life. Sci. 50(1): 167-178. https://doi.org/10.14397/jals.2016.50.1.167
  32. Woo, S. H., J. W. Jhoo, W. B. Yoon, and G. Y. Kim. 2010. Effect of trehalose and sugar alcohol on the viability of lactic acid bacteria and quality characteristics during frozen storage of yoghurt. Food. Eng. Prog. 14(1): 14-20.
  33. Yang, Y., N. Zheng, X. Zhao, Y. Zhang, R. Han, J. Yang, S. Zhao, S. Li, T. Guo, C. Zang, and J. Wang. 2016. Metablomic biomarkers identify differences in milk produced by Holstein cows and other minor dairy animals. J. Proteomics. 136: 174-182. https://doi.org/10.1016/j.jprot.2015.12.031