DOI QR코드

DOI QR Code

Inhibition of nicotine-induced Streptococcus mutans biofilm formation by salts solutions intended for mouthrinses

  • Balhaddad, Abdulrahman A. (Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman bin Faisal University) ;
  • Melo, Mary Anne S. (Biomedical Sciences, University of Maryland School of Dentistry) ;
  • Gregory, Richard L. (Department of Biomedical and Applied Sciences, Indiana University School of Dentistry)
  • Received : 2018.07.19
  • Accepted : 2018.12.18
  • Published : 2019.02.28

Abstract

Objectives: Biofilm formation is critical to dental caries initiation and development. The aim of this study was to investigate the effects of nicotine exposure on Streptococcus mutans (S. mutans) biofilm formation concomitantly with the inhibitory effects of sodium chloride (NaCl), potassium chloride (KCl) and potassium iodide (KI) salts. This study examined bacterial growth with varying concentrations of NaCl, KCl, and KI salts and nicotine levels consistent with primary levels of nicotine exposure. Materials and Methods: A preliminary screening experiment was performed to investigate the appropriate concentrations of NaCl, KCl, and KI to use with nicotine. With the data, a S. mutans biofilm growth assay was conducted using nicotine (0-32 mg/mL) in Tryptic Soy broth supplemented with 1% sucrose with and without 0.45 M of NaCl, 0.23 M of KCl, and 0.113 M of KI. The biofilm was stained with crystal violet dye and the absorbance measured to determine biofilm formation. Results: The presence of 0.45 M of NaCl, 0.23 M of KCl, and 0.113 M of KI significantly inhibited (p < 0.05) nicotine-induced S. mutans biofilm formation by 52%, 79.7%, and 64.1%, respectively. Conclusions: The results provide additional evidence regarding the biofilm-enhancing effects of nicotine and demonstrate the inhibitory influence of these salts in reducing the nicotine-induced biofilm formation. A short-term exposure to these salts may inhibit S. mutans biofilm formation.

Keywords

References

  1. Aguilar-Zinser V, Irigoyen ME, Rivera G, Maupome G, Sanchez-Perez L, Velazquez C. Cigarette smoking and dental caries among professional truck drivers in Mexico. Caries Res 2008;42:255-262. https://doi.org/10.1159/000135670
  2. Avsar A, Darka O, Topaloglu B, Bek Y. Association of passive smoking with caries and related salivary biomarkers in young children. Arch Oral Biol 2008;53:969-974. https://doi.org/10.1016/j.archoralbio.2008.05.007
  3. Campus G, Cagetti MG, Senna A, Blasi G, Mascolo A, Demarchi P, Strohmenger L. Does smoking increase risk for caries? A cross-sectional study in an Italian military academy. Caries Res 2011;45:40-46. https://doi.org/10.1159/000322852
  4. Jacob N, Golmard JL, Berlin I. Relationships between nicotine and cotinine concentrations in maternal milk and saliva. Acta Paediatr 2015;104:e360-e366. https://doi.org/10.1111/apa.13031
  5. Papaseit E, Farre M, Graziano S, Pacifici R, Perez-Mana C, Garcia-Algar O, Pichini S. Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma. Clin Chem Lab Med 2017;55:415-423. https://doi.org/10.1515/cclm-2016-0405
  6. Shafagoj YA, Mohammed FI, Hadidi KA. Hubble-bubble (water pipe) smoking: levels of nicotine and cotinine in plasma, saliva and urine. Int J Clin Pharmacol Ther 2002;40:249-255. https://doi.org/10.5414/CPP40249
  7. Hoffmann D, Adams JD. Carcinogenic tobacco-specific N-nitrosamines in snuff and in the saliva of snuff dippers. Cancer Res 1981;41:4305-4308.
  8. Feyerabend C, Higenbottam T, Russell MA. Nicotine concentrations in urine and saliva of smokers and non-smokers. Br Med J (Clin Res Ed) 1982;284:1002-1004. https://doi.org/10.1136/bmj.284.6321.1002
  9. Dhar P. Measuring tobacco smoke exposure: quantifying nicotine/cotinine concentration in biological samples by colorimetry, chromatography and immunoassay methods. J Pharm Biomed Anal 2004;35:155-168. https://doi.org/10.1016/j.jpba.2004.01.009
  10. Huang R, Li M, Gregory RL. Effect of nicotine on growth and metabolism of Streptococcus mutans. Eur J Oral Sci 2012;120:319-325. https://doi.org/10.1111/j.1600-0722.2012.00971.x
  11. Li M, Huang R, Zhou X, Zhang K, Zheng X, Gregory RL. Effect of nicotine on dual-species biofilms of Streptococcus mutans and Streptococcus sanguinis. FEMS Microbiol Lett 2014;350:125-132. https://doi.org/10.1111/1574-6968.12317
  12. Huang R, Li M, Gregory RL. Nicotine promotes Streptococcus mutans extracellular polysaccharide synthesis, cell aggregation and overall lactate dehydrogenase activity. Arch Oral Biol 2015;60:1083-1090. https://doi.org/10.1016/j.archoralbio.2015.04.011
  13. Li M, Huang R, Zhou X, Qiu W, Xu X, Gregory RL. Effect of nicotine on cariogenic virulence of Streptococcus mutans. Folia Microbiol (Praha) 2016;61:505-512. https://doi.org/10.1007/s12223-016-0465-8
  14. Balhaddad A, Gregory RL. In-vitro model of Scardovia wiggsiae biofilm formation and effect of nicotine. J Dent Res 2018;97(Special Issue A):Abstract #0593.
  15. Tanaka K, Miyake Y, Nagata C, Furukawa S, Arakawa M. Association of prenatal exposure to maternal smoking and postnatal exposure to household smoking with dental caries in 3-year-old Japanese children. Environ Res 2015;143:148-153. https://doi.org/10.1016/j.envres.2015.10.004
  16. Wagenknecht DR, BalHaddad AR, Gregory RL. Effects of nicotine on oral microorganisms, human tissues, and the interactions between them. Curr Oral Health Rep 2018;5:78-87. https://doi.org/10.1007/s40496-018-0173-3
  17. Hirasawa M, Takada K. Susceptibility of Streptococcus mutans and Streptococcus sobrinus to cell wall inhibitors and development of a novel selective medium for S. sobrinus. Caries Res 2002;36:155-160. https://doi.org/10.1159/000059329
  18. Twetman S, Linder L, Modeer T. Influence of bacterial cell concentration and inorganic anions on lysis of Streptococcus mutans BHT by salivary lysozyme. Scand J Dent Res 1984;92:533-538.
  19. Pollock JJ, Goodman H, Elsey PK, Iacono VJ. Synergism of lysozyme, proteases and inorganic monovalent anions in the bacteriolysis of oral Streptococcus mutans GS5. Arch Oral Biol 1983;28:865-871. https://doi.org/10.1016/0003-9969(83)90045-6
  20. Hamada S, Torii M, Kotani S, Masuda N, Ooshima T, Yokogawa K, Kawata S. Lysis of Streptococcus mutans cells with mutanolysin, a lytic enzyme prepared from a culture liquor of Streptomyces globisporus 1829. Arch Oral Biol 1978;23:543-549. https://doi.org/10.1016/0003-9969(78)90268-6
  21. Ligtenberg AJ, Veerman EC, Nieuw Amerongen AV. A role for Lewis a antigens on salivary agglutinin in binding to Streptococcus mutans. Antonie van Leeuwenhoek 2000;77:21-30. https://doi.org/10.1023/A:1002054810170
  22. Dashper SG, Reynolds EC. Effects of organic acid anions on growth, glycolysis, and intracellular pH of oral streptococci. J Dent Res 2000;79:90-96. https://doi.org/10.1177/00220345000790011601
  23. Radcliffe CE, Akram NC, Hurrell F, Drucker DB. Effects of nitrite and nitrate on the growth and acidogenicity of Streptococcus mutans. J Dent 2002;30:325-331. https://doi.org/10.1016/S0300-5712(02)00046-5
  24. Skjorland K, Gjermo P, Rolla G. Effect of some polyvalent cations on plaque formation in vivo. Scand J Dent Res 1978;86:103-107.
  25. Hamama HH, Yiu CK, Burrow MF. Effect of silver diamine fluoride and potassium iodide on residual bacteria in dentinal tubules. Aust Dent J 2015;60:80-87. https://doi.org/10.1111/adj.12276
  26. Knight GM, McIntyre JM, Craig GG, Mulyani, Zilm PS, Gully NJ. Differences between normal and demineralized dentine pretreated with silver fluoride and potassium iodide after an in vitro challenge by Streptococcus mutans. Aust Dent J 2007;52:16-21. https://doi.org/10.1111/j.1834-7819.2007.tb00460.x
  27. Marsh PD, Williamson MI, Keevil CW, McDermid AS, Ellwood DC. Influence of sodium and potassium ions on acid production by washed cells of Streptococcus mutans ingbritt and Streptococcus sanguis NCTC 7865 grown in a chemostat. Infect Immun 1982;36:476-483. https://doi.org/10.1128/IAI.36.2.476-483.1982
  28. Goodman H, Pollock JJ, Katona LI, Iacono VJ, Cho MI, Thomas E. Lysis of Streptococcus mutans by hen egg white lysozyme and inorganic sodium salts. J Bacteriol 1981;146:764-774. https://doi.org/10.1128/JB.146.2.764-774.1981
  29. Greger JE, Eisenberg AD. Adenosine 5'-triphosphate content of Streptococcus mutans GS-5 during starvation in a buffered salt medium. Caries Res 1985;19:314-319. https://doi.org/10.1159/000260861
  30. Sanui T, Gregory RL. Analysis of Streptococcus mutans biofilm proteins recognized by salivary immunoglobulin A. Oral Microbiol Immunol 2009;24:361-368. https://doi.org/10.1111/j.1399-302X.2009.00523.x
  31. Schreiber S, Ronfani L, Ghirardo S, Minen F, Taddio A, Jaber M, Rizzello E, Barbi E. Nasal irrigation with saline solution significantly improves oxygen saturation in infants with bronchiolitis. Acta Paediatr 2016;105:292-296. https://doi.org/10.1111/apa.13282
  32. Mahajan VK. Sporotrichosis: an overview and therapeutic options. Dermatol Res Pract 2014;2014:272376. https://doi.org/10.1155/2014/272376
  33. Kardalas E, Paschou SA, Anagnostis P, Muscogiuri G, Siasos G, Vryonidou A. Hypokalemia: a clinical update. Endocr Connect 2018;7:R135-R146. https://doi.org/10.1530/EC-18-0109
  34. Demirhan H, Yildiz M, Celebi OO, Baz S, Inal BB, Yigit O. The role of fetuin-A and electrolytes in the etiology of sialolithiasis. Otolaryngol Head Neck Surg 2017;156:840-843. https://doi.org/10.1177/0194599817697045
  35. Gulaboglu M, Yildiz L, Gul M, Celebi F, Peker K. Blood and urine iodine levels in patients with gastric cancer. Biol Trace Elem Res 2006;113:261-271. https://doi.org/10.1385/BTER:113:3:261
  36. Myant NB. Iodine metabolism of salivary glands. Ann N Y Acad Sci 1960;85:208-214. https://doi.org/10.1111/j.1749-6632.1960.tb49959.x

Cited by

  1. Antibacterial efficacy and remineralization capacity of glycyrrhizic acid added casein phosphopeptide‐amorphous calcium phosphate vol.83, pp.7, 2019, https://doi.org/10.1002/jemt.23465
  2. Emerging Contact-Killing Antibacterial Strategies for Developing Anti-Biofilm Dental Polymeric Restorative Materials vol.7, pp.3, 2020, https://doi.org/10.3390/bioengineering7030083
  3. 단삼 메탄올 추출물의 구강 병원성 세균에 대한 항균 및 항염증효과 vol.52, pp.1, 2019, https://doi.org/10.22889/kjp.2021.52.1.41
  4. The burden of root caries: Updated perspectives and advances on management strategies vol.38, pp.2, 2019, https://doi.org/10.1111/ger.12511
  5. Microorganisms: crucial players of smokeless tobacco for several health attributes vol.105, pp.16, 2021, https://doi.org/10.1007/s00253-021-11460-2
  6. Antibacterial Activities of Methanol and Aqueous Extracts of Salvadora persica against Streptococcus mutans Biofilms: An In Vitro Study vol.9, pp.12, 2019, https://doi.org/10.3390/dj9120143