DOI QR코드

DOI QR Code

Computational Modeling and Analysis of Ablative Composites Using Micro-tomographic Images

미세 단층 영상을 이용한 삭마 복합재료의 전산 모델링 및 해석

  • Cheon, Jae Hee (Department of Aerospace Engineering, Chonbuk National University) ;
  • Roh, Kyung Uk (Department of Aerospace Engineering, Chonbuk National University) ;
  • Shin, Eui Sup (Department of Aerospace Engineering, Chonbuk National University)
  • Received : 2019.06.28
  • Accepted : 2019.08.06
  • Published : 2019.09.01

Abstract

In this study, Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation. The ablation tests of carbon/phenolic composites were performed using a 0.4 MW arc-heated wind tunnel. The carbon/phenolic composite samples were scanned using the micro-computed tomography (Micro-CT) to analyze the ablation characteristics according to a duration time of the ablation test. By calibrating the scanned images, computational models were developed that reflect the actual microstructure of the ablation composites. Also, nine computational models that reflect the actual pore shape were developed using the created cross-sectional images. Image-based computational analysis using the developed models was performed to predict the degradation of effective properties by ablation and the decrease of effective properties was confirmed with increase of porosity.

본 연구에서는 미세 단층 영상을 이용하여 삭마 복합재료의 전산 모델링 및 해석을 수행하였다. 탄소/페놀릭(carbon/phenolic) 복합재료의 삭마 실험은 0.4MW 아크 가열 풍동을 이용하여 수행하였다. 미세 단층 촬영기(Micro-CT)로 삭마 실험 전후의 복합재료 시편을 촬영하여 이진화된 단층 영상을 생성하였다. 생성된 이진화 영상을 활용하여, 삭마 복합재료의 실제 미시 구조가 반영된 전산 모형을 개발하였다. 영상 기반 전산 모형은 시편 횡방향의 특정 영역의 영상을 적층하여 개발하였다. 전산 모형은 실험 전 시편 영상에서 1종, 실험 후 시편 영상에서 8종, 총 9종의 전산 모형을 개발하였다. 영상 기반 전산 모형을 통해 삭마에 의한 유효 물성을 예측하였으며, 기공도 증가에 따른 유효 물성 저하를 확인하였다.

Keywords

References

  1. Gnoffo, P. A., "Planetary-entry gas dynamics," Annual Review of Fluid Mechanics, Vol. 31, 1999, pp. 459-494. https://doi.org/10.1146/annurev.fluid.31.1.459
  2. Riccio, A., et al., "Optimum design of ablative thermal protection systems for atmospheric entry vehicles," Applied Thermal Engineering, Vol. 119, 2017, pp. 541-552. https://doi.org/10.1016/j.applthermaleng.2017.03.053
  3. Daniel, M. E., et al., "Small Probe Reentry Investigation for TPS Engineering (SPRITE)," 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, 2012.
  4. Palaninathan, R. A., and Bindu, S., "Modeling of mechanical ablation in thermal protection systems," Journal of Spacecraft and Rockets, Vol. 42, 2005, pp. 971-979. https://doi.org/10.2514/1.10710
  5. Dimitrienko, Y. I., "Thermomechanics of composite structures under high temperatures," Springer, Vol. 224, 2016.
  6. Cheng, H., et al., "Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure," Composites Science and Technology, Vol. 140, 2017, pp. 63-72. https://doi.org/10.1016/j.compscitech.2016.12.031
  7. Bahramian, A. R., et al., "Ablation and thermal degradation behaviour of a composite based on resol type phenolic resin: process modeling and experimental," Polymer, Vol. 47, 2006, pp. 3661-3673. https://doi.org/10.1016/j.polymer.2006.03.049
  8. Han, J. C., He, X. D., and Du, S. Y., "Oxidation and ablation of 3D carbon-carbon composite at up to $3000^{\circ}C$," Carbon, Vol. 33, 1995, pp. 473-478. https://doi.org/10.1016/0008-6223(94)00172-V
  9. Bessire, B. K., Lahankar, S. A., and Minton, T. K., "Pyrolysis of phenolic impregnated carbon ablator (PICA)," ACS applied materials & interfaces, Vol. 7, 2014, pp. 1383-1395. https://doi.org/10.1021/am507816f
  10. Torre, L., et al., "Degradation behaviour of a composite material for thermal protection systems Part III Char characterization," Journal of materials science, Vol. 35, 2000, pp. 4563-4566. https://doi.org/10.1023/A:1004828923152
  11. Kim, S. J., Han, S. Y., and Shin, E. S., "Calculation of poroelastic parameters of porous composites by using micromechanical finite element models," Composites Research, Vol. 25, 2012, pp. 1-8. https://doi.org/10.7234/kscm.2012.25.1.001
  12. Chung, S.-Y., et al., "Evaluation of effect of glass beads on thermal conductivity of insulating concrete using micro CT images and probability functions," Cement and Concrete Composites, Vol. 65, 2016, pp. 150-162. https://doi.org/10.1016/j.cemconcomp.2015.10.011
  13. Wang, Q., et al., "Reconstruction of cocontinuous ceramic composites three-dimensional microstructure solid model by generation-based optimization method," Computational Materials Science, Vol. 117, 2016, pp. 534-543. https://doi.org/10.1016/j.commatsci.2016.02.027
  14. Pahr, D. H., and Zysset, P. K., "Influence of boundary conditions on computed apparent elastic properties of cancellous bone," Biomechanics and modeling in mechanobiology, Vol. 7, 2008, pp. 463-476. https://doi.org/10.1007/s10237-007-0109-7
  15. Pahr, D. H., and Bohm, H. J., "Assessment of mixed uniform boundary conditions for predicting the mechanical behavior of elastic and inelastic discontinuously reinforced composites," Computer Modeling in Engineering and Sciences, Vol. 34, 2008, pp. 117-136.
  16. Daniel, I. M., and Ishai, O., "Engineering Mechanics of Composite Materials," Oxford University Press, 2014, pp. 380.