DOI QR코드

DOI QR Code

Spray Characteristics of a Movable Pintle Injector with Pintle Tip Shape

가변 핀틀 인젝터에서 핀틀 팁 형상에 따른 분무특성 연구

  • Nam, Jeongsoo (Graduate School, Korea Aerospace University) ;
  • Lee, Keonwoong (Graduate School, Korea Aerospace University) ;
  • Park, Sunjung (Space Solutions Co., LTD) ;
  • Huh, Hwanil (Department of Aerospace Engineering, Chungnam National University) ;
  • Koo, Jaye (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2019.03.25
  • Accepted : 2019.08.20
  • Published : 2019.09.01

Abstract

In the development of the liquid rocket engine using the pintle injector, spray characteristics such as spray angle, droplet size, and distribution of the droplets are dominant parameters. Three different kind of multi hole type pintle tip and a continuous type pintle tip were designed. In the case of multi hole pintle tip, SMD result did not have a significant difference depending on the number of holes. In analysis with visualization images, however, the droplets were uniformly distributed as the number of holes increased. Liquid droplets from continuous type pintle tip were finely atomized and dispersed uniformly than those from multi-hole type pintle tip. In addition, the thrust control by adjusting the liquid injection area of the pintle is suitable for the continuous type, which is easier to face-shutoff rather than the multi hole type. The spray angle of each pintle tip according to TMR was measured to derive a specific tendency and corresponding empirical formula.

핀틀 인젝터를 사용하는 액체로켓개발에 있어서 분무특성인 분무각도, 액적크기, 액적의 분포정도는 중요한 요소이다. 세 종류의 다중 홀형 핀틀 팁과 연속형 핀틀 팁을 설계하여 분무실험을 수행하였다. 다중 홀형 인젝터에서 홀 개수에 따른 액적크기는 크게 차이가 없었으며, 홀 개수가 많을수록 액적이 균일하게 분포하였다. 연속형 핀틀은 다중 홀형 핀틀보다 액적의 미립화가 잘 이루어 지고 공간내로 더 고르게 분산되는 것을 확인하였다. 핀틀의 액체분사면적조절을 통한 추력제어는 다중 홀형보다는 면 접촉 닫힘(face-shutoff)이 용이한 연속형 핀틀이 적합하다. 각 핀틀 팁의 TMR에 따른 분무각을 측정하여 특정한 경향성과 그에 해당하는 경험식을 도출하였다.

Keywords

References

  1. Dressler G. A., and Bauer J. M., "TRW Pintle Engine Heritage and Performance Characteristics," 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, A.L., U.S.A, AIAA 2000-3871, 2000.
  2. George P. S., and Oscar B., Rocket Propulsion Elements, 8th Ed., John Wiley & Sons, Inc., Hoboken, New Jersey, 2010, pp. 277-278.
  3. Kim, D. H., Lee, K. W. and Koo, J. Y., "Effents of Wall-Injection Length on Spray and Combustion in a Coaxial Porous Injector," Journal of Propulsion and Power, Vol. 32, No. 3, 2016, pp. 533-541. https://doi.org/10.2514/1.B35575
  4. Boettcher P. A., Damazo J. S., Shepherd J. E., Mikellides, I. G., and Vaughan, D. A., "Visualization of transverse annular jets," 62nd Annular meeting of the APS Division of Fluid Mechanic, MN, USA, 2009.
  5. Cheng, P., Li, Q., Xu, S., and Kang, Z., "On the prediction of spray angle of liquid-liquid pintle injectors," Acta Astronautica, september 2017, pp. 145-151.
  6. Park, S. J., Nam, J. S., Lee, K. W., Koo, J. Y., and Hwang, Y. S., "Prediction on throttling performance of a movable sleeve injector for deep throttling," Journal of the Korean Society for Aeronautical and Space Sciences, June 2018, pp. 487-495.
  7. Son, M., "Correlations between Spray and Combustion Characteristics of a Movable Pintle Injector for Liquid Rocket Engines," Ph. D. Thesis, 2017.