DOI QR코드

DOI QR Code

Evaluation of Apparent Chloride Diffusion Coefficient of Fly Ash Concrete by Marine Environment Exposure Tests

해양 환경 폭로 시험을 통한 FA 콘크리트의 겉보기 염화물 확산계수 평가

  • 윤용식 (한남대학교 건설시스템공학과) ;
  • 임희섭 (한남대학교 건설시스템공학과) ;
  • 권성준 (한남대학교 건설시스템공학과)
  • Received : 2019.03.18
  • Accepted : 2019.04.17
  • Published : 2019.05.01

Abstract

In case of RC(Reinforced Concrete) structures which are constructed in coastal areas, chloride ions in sea water corrode the steel rebar in concrete. Especially in coastal areas, RC structures are affected by not only immersion of sea water, but also tidal of sea water and airborne chloride ions. In this study, marine environment exposure tests are conducted, considering 3 types of exposure environments(immersion zone, tidal zone, splash zone) and the exposure periods of 180 days, 365 days, and 730 days. Also, the concrete mixtures for this study are established, considering 3 levels of W/B(Water to Binder) ratio(0.37, 0.42, 0.47) and 2 levels of substitution rate of Fly ash(0 %, 30 %). In all exposure environments, Fly ash concrete has lower apparent chloride diffusion coefficients than OPC concrete. It is thought that fly ash's pozzolan reaction improves chloride resistance of concrete. Fly ash concrete has up to 63.5 % of decreasing rate in 180 days of exposure and up to 55.8 % of decreasing rate in 730 days of exposure, based on diffusion coefficients of OPC concrete. As a result of evaluation about effects of exposure environments, apparent chloride diffusion coefficients of fly ash concrete are evaluated in order of tidal zone, immersion zone, and splash zone. In tidal zone, It is thought that repeated cycles of wetting and drying of sea water cause the diffusion of chloride ions rapidly.

해안 지역에 시공된 철근 콘크리트 구조물은 해수 중의 염소 이온에 의해 내부 철근이 부식하게 된다. 특히 해안지역에서는 해수에 침지되는 경우뿐만 아니라 조수간만 및 비래염분의 영향을 받기 때문에 이에 대한 고려가 필수적이다. 본 연구에서는 3가지 수준의 노출 환경(침지대, 간만대, 비말대)과 노출기간 180일, 365일, 730일을 고려하여 해양환경노출실험을 실시하였다. 대상 배합은 3가지 수준의 물-결합재비 및 2가지 수준의 플라이애시 치환률(0 %, 30 %)을 고려하여 설정하였다. 모든 노출조건에서 플라이 애시 치환 배합이 OPC 배합 대비 낮은 겉보기 염화물 확산계수를 나타내었으며, 이는 플라이애시의 포졸란 반응이 원인으로 사료된다. 플라이애시 배합은 노출 기간 180일에서는 플라이애시 치환 배합이 OPC 배합 대비 최대 63 5 %의 감소율을, 노출 기간 730일 에서는 최대 55.8 %의 감소율을 나타내었다. 노출 조건에 따른 확산계수 거동을 평가한 결과, 플라이애시 치환 배합에서는 간만대, 침지대, 비말대 순으로 확산계수가 평가되었다. 간만대에서는 건습이 반복되어 염화물 이온의 침투가 빠르게 일어나는 것으로 보인다.

Keywords

References

  1. Bilodeau, A., Malhotra, V. M., and Golden, D. M. (1998), Mechanical Properties and Durability of Structural Lightweight Concrete Incorporating High-Volumes of Fly Ash, ACI International, 178, 449-474.
  2. Glasser, F. P., Marchand, J., and Samson, E. (2008), Durability of concrete - Degradation phenomena involving detrimental chemical reactions, Cement and Concrete Research, 38(2008), 226-246. https://doi.org/10.1016/j.cemconres.2007.09.015
  3. KCI(Korea Concrete Institute). (1996), Latest Concrete Engineering, Kimoondang, Seoul, 453-459.
  4. Kirkpatrick, T. J., Weyers, R. E., Anderson-Cook, C. M., and Sprinkel, M. M. (2002), Probabilistic model for the chloride-induced corrosion service life of bridge decks, Cement and Concrete Research, 32(2002), 1943-1960. https://doi.org/10.1016/S0008-8846(02)00905-5
  5. Kwon, S.O., Bae, S.H., Lee, H.J., and Jung, S. H. (2014), Characteristics for Reinforcement Corrosion and Chloride Ion Diffusion of High Volume Fly Ash Concrete, Journal of the Korean Recycled Construction Resources Institute, 2(1), 34-39. https://doi.org/10.14190/JRCR.2014.2.1.034
  6. Kim, J., McCarter, W. J., Suryanto, B., Nanukuttan, S., Basheer, P. A. M., and Chrisp, T. M. (2016), Chloride ingress into marine exposed concrete: A comparison of empirical- and physicallybased models, Cement and Concrete Composites, 72(2016), 133-145. https://doi.org/10.1016/j.cemconcomp.2016.06.002
  7. KS F 2714. (2017), Standard test method for acid-soluble chloride in mortar and concrete, KSSN, 1-3.
  8. KS L 5405. (2018), Fly Ash, KSSN, 1-8.
  9. Kim, H. J., Yoon, Y. S., Yang, K. H., and Kwon, S. J. (2019), Durability and purification performance of concrete impregnated with silicate and sprayed with photocatalytic $TiO_2$, Construction and Building Materials, 199, 106-114. https://doi.org/10.1016/j.conbuildmat.2018.12.035
  10. Lee, J. W., Kim, K. M., Bae, Y. K., and Lee, J. S. (2004), Study on the field application according to the early strength of the concrete admixed with polycarboxylate superplasticizer, In Korea Concrete Institute academic conference, Korea Concrete Institute, Pyoengchang, 200-203.
  11. Lee, S. K., and James, Z. (2014), An FHWA Special Study: Post-Tensioning Tendon Grout Chloride Thresholds, Federal Highway Administration, FHWA-HRT-14-039, 7-20.
  12. Lee, B. K., Kim, G. Y., Kim, G. T., Shin, K. S,. and Nam, J. S. (2017), Chloride Ion Penetration Resistance of Slag-replaced Concrete and Cementless Slag Concrete by Marine Environmental Exposure, Journal of the Korea Concrete Institute, 29(3), 299-306. https://doi.org/10.4334/JKCI.2017.29.3.299
  13. Metha, P. K., and Monteiro, P. M. (1993), Concrete-Structure, properties, and materials, 2nd edition, prentice Hall, New-Jersey, 160-165.
  14. Nath, P., and Sarker, P. (2011), Effect of Fly Ash on the Durability Properties of High Strength Concrete, Procedia Engineering, 14(2011), 1149-1156. https://doi.org/10.1016/j.proeng.2011.07.144
  15. Park, S. S., and Kim, M. W. (2013), Evaluation the Concrete mix by Type Accelerated Corrosion Test and Chloride Penetration Analysis with Artificial Seawater Cyclic Wet and Dry Condition, Journal of the Korean Recycled Construction Resources Institute, 1(3), 211-218. https://doi.org/10.14190/JRCR.2013.1.3.211
  16. Samsung Engineering Research Institute: SERI. (2003), Evaluation of chloride ion diffusion characteristics of high durability concrete.
  17. Thamoas, M. D. A., and Bamforth, P. B. (1999), Modelling chloride diffusion in concrete Effect of fly ash and slag, Cement and Concrete Research, 29(1999), 487-495. https://doi.org/10.1016/S0008-8846(98)00192-6
  18. Yoo, J. G. (2010), Durability Design of Concrete and Evaluation of Field Application on Reinforced Concrete Structure Exposed to Marine Environment, Ph.D. dissertation, Daejeon, Chungnam University, Department of Architectural Engineering.
  19. Yoon, Y.S ., Ryu, H. S., Lim, H. S., Koh, K. T., Kim, J. S., and Kwon, S. J. (2018) Effect of grout conditions and tendon location on corrosion pattern in PS tendon in grout, Construction and Building Materials, 186, 1005-1015. https://doi.org/10.1016/j.conbuildmat.2018.08.023
  20. Yoon, Y. S., and Kwon, S. J. (2018), Evaluation of Time-Dependent Chloride Resistance in HPC Containing Fly Ash Cured for 1 Year, Journal of the Korea Institute for Structural Maintenance and Inspection, 22(4), 52-59. https://doi.org/10.11112/JKSMI.2018.22.4.052
  21. Yang, H. M., Lee, H. S., Yang, K. H., Ismail, M. A., and Kwon, S. J. (2018), Time and cold joint effect on chloride diffusion in concrete containing GGBFS under various loading conditions, Construction and Building Materials, 167(2018), 739-748. https://doi.org/10.1016/j.conbuildmat.2018.02.093