DOI QR코드

DOI QR Code

Inhibition Effect on Pathogenic Microbes and Antimicrobial Resistance of Probiotics

Probiotics의 병원성 미생물에 대한 억제효과와 항균제 내성

  • Kim, Jae Soo (Department of Laboratory Medicine, Dankook University Hospital) ;
  • Yuk, Young Sam (Department of Biomedical Laboratory Science, College of Health Sciences, Dankook University) ;
  • Kim, Ga Yeon (Department of Public Health, Dankook University Graduate School)
  • 김재수 (단국대학교병원 진단검사의학과) ;
  • 육영삼 (단국대학교 임상병리학과) ;
  • 김가연 (단국대학교 대학원 보건학과)
  • Received : 2019.07.17
  • Accepted : 2019.09.04
  • Published : 2019.09.30

Abstract

To investigate the inhibition effect on pathogenic microbes and the antimicrobial resistance of probiotics, a total of 140 probiotics were isolated from 35 kinds of Korean commercially available Kimchi. Of those, L. plantarum was identified from 53 strains (37.9%), E. faecium from 27 strains (19.3%), and L. rhamnosus from 7 strains (5.0%) using 16S rRNA gene sequencing. Sixty nine strains (49.3%) showed overall antimicrobial activity against pathogenic microbes, namely S. Typhi, S. Enteritidis, E. coli O157:H7, S. flexneri, NAG Vibrio, Listeria monocytogenesis, Y. enterocolitica, S. aureus, S. pyogenes, G. vaginalis, C. albicans, and P. acne. The proportions of L. plantarum, E. faecium, and L. rhamnosus strains to pathogenic microbes were 75.5%, 40.7%, and 28.6%, respectively. In addition, a resistance test with 18 antimicrobial agents using a disk diffusion assay revealed a resistance incidence of 98.6% for nalidixic acid, 83.6% for streptomycin, 75.7% for gentamicin 73.6% for vancomycin, 72.1% for norfloxacin, and 67.9% for ciprofloxacin. In conclusion, L. plantarum, L. sakei, and E. faecium strains with various antimicrobial activities and broad antibiotic resistance are useful for treating diarrhea in long-term inpatients and for the alternative use for treating Candida species female vaginitis.

국내시판 김치로부터 분리한 probiotics의 병원생 미생물에 대한 억제효과와 항균제 내성을 조사하기 위해 35종의 국내시판 김치에서 총 140주의 probiotics를 분리하였으며, 16S rRNA 염기서열 분석을 통해 L. plantarum이 53주(37.9%), E. faecium 27주(19.3%) 그리고 L. rhamnosus 7주(5.0%) 순으로 동정되었고, 12종(species)의 다양한 병원성 미생물 즉 S. Typhi, S. Enteritidis, E. coli O157:H7, S. flexneri, NAG Vibrio, L. monocytogenesis, Y. enterocolitica, S. aureus, S. pyogenes, G. vaginalis, C. albicans, P. acne에 대한 전체적인 항균성은 69주(49.3%)이었으며, 균종별로 살펴보면 L. plantarum 75.5%, L. sakei 66.7%, E. faecium 40.7%, 그리고 L. rhamnosus 28.6% 순이었다. 또한 디스크 확산법에 의한 18종의 다양한 계열의 항균제에 대한 내성시험 결과 nalidixic acid가 98.6%의 내성을, S 83.6%, gentamicin 75.7%, vancomycin 73.6%, norfloxacin 72.1%, 그리고 ciprofloxacin 67.9% 순으로 나타났다. 결론적으로 본 실험에서 다양한 항균활성과 광범위한 항생제 내성을 지닌 L. plantarum, L. sakei, 그리고 E. faecium 균주가 장기 항생제 치료환자에 대한 유용한 설사 치료용 및 Candida 속이 야기하는 여성질염 치료제로서의 사용이 유용할 것으로 생각된다.

Keywords

References

  1. FAO/WHO. Report of a joint FAO/WHO working group on drafting guidelines for the evaluation of probiotcs in food. London: FAO/WHO; 2002.
  2. Won TJ, Kim B, Song DS, Lim YT, Oh ES, Lee DI, et al. Modulation of Th1/Th2 balance by lactobacillus strains isolated from kimchi via stimulation of macrophage cell line J774A.1 in vitro. J Food Sci. 2011;76:55-61. https://doi.org/10.1111/j.1750-3841.2010.02031.x.
  3. Han SC, Kang GJ, Ko YJ, Kang HK, Moon SW, Ann YS, et al. Fermented fish oil suppresses T helper 1/2 cell response in a mouse model of stopic dermatitis via generation of $CD4^{+}$ $CD25^{+}Foxp3^{+}$ T cells. BMC Immunol. 2012;13:44. https://doi.org/10.1186/1471-2172-13-44.
  4. Song GS. The history of antimicrobial drug development and the current situation. Infect Chemother. 2012;44:263-268. https://doi.org/10.3947/ic.2012.44.4.263.
  5. Ministry of Food and Drug Safety. Food standards. Cheonju, KOR: MFDS; Notice 2016-23.
  6. Ministry of Food and Drug Safety. Standards and specifications of health functional foods. Cheongju, KOR: MFDS; Notice 2014-204.
  7. Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol. 2006;48:75-83. https://doi.org/10.1111/j.1574-695X.2006.00124.
  8. Lawalata HJ, Sembiring L, Rahayu ES. Molecular identification of lactic acid bacteria producing antimicrobial agents from bakasang. An indonesian traditional fermented fish product. Indonesian J Biotechnol. 2011;16:93-99. https://doi.org/10.22146/ijbiotech.16368.
  9. Abosereh NA, El Ghani S, Gomaa RS, Fouad MT. Molecular identification of potential probiotic lactic acid baceria strains isolated from egyptican traditional fermented dairy products. Biotechnol. 2016;15:35-43. https://doi.org/10.3923/biotech.2016.35.43.
  10. Ligocka A, Paluszak Z. Capability of lactic acid bacteria to inhibit pathogens in sewage sludge subjected to biotechnological processes. Bull Vet Inst Pulawy. 2005;49:23-27.
  11. Kaewsrichan J, Chandarajoti K, Kaewnopparat S, Kaewnopparat N. Evaluation of lactobacilli containing suppository formulation for probiotic use. Mahidol Univ J Pharm Sci. 2007;34:1-8.
  12. CLSI. Performance standards for antimicrobial disk susceptibility testing; approved standard. M100-S27. Wayne, PA: CLSI; 2017.
  13. OIE. OIE terrestrial manual. Paris: OIE; 2008. p56-65.
  14. WHO. Manual for the laboratory identification and antimicrobial susceptibility testing of bacterial pathogens of public health importance in the developing world. Geneva: WHO; 2003.
  15. CLSI. Performance standards for antimicrobial disk susceptibility tests; approved standard. MO2-A11. Wayne PA: CLSI; 2012. p32.
  16. Tamang JP, Tamang B, Schillinger U, Guigas C, Holzapfel WH. Functional properties of lactic acid bacteria isolated from ethnic fermented vegetables of the Himalayas. Int J Food Microbiol. 2009;135:28-33. https://doi.org/10.1023/A:1008867511369.
  17. Khan H, Flint S, Yu PL. Enterocins in food preservation. Int J Food Microbiol. 2010;141:1-10. https://doi.org/10.1016/j.ijfoodmicro.2010.03.005.
  18. Abedi D, Feizizadeh S, Akbari V, Jafarian-Dehkordi A. In vitro anti-bacterial and anti-adherence effects of Lactobacillus delbrueckii subsp. bulgaricus on Escherichia coli. Res Pharm Sci. 2013;8:260-268.
  19. Seoul National University. Development of lactic acid bacterial starter for Kimchi production. Research report. Seoul: Ministry of Agriculture and Forestry; 2002.
  20. Kwon MS, Ryoo CR, Kang CH, Min KH, Kim WJ. Bacteriocin produced by Pediococcus sp. in kimchi and its characteristics. J Microbiol Biotech. 2002;12:96-105.
  21. Jeun JH, Kim HD, Lee HS, Ryu BH. Isolation and identification of Lactobacillus sp. producted aminobutyric acid (GABA) from traditional salt fermented anchovy. Kor J Food Nutr. 2004;17:72-79.
  22. Jung YS. Microbiological studies of soysauce: identification and isolation of bacteria from tranditional soysauce. Kor J Microbiol. 1963;1:30-35.
  23. Suez j, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bashiardes M, Bashiardes S, et al. Post-Antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;6:1406-1423. https://doi.org/10.1016/j.cell.2018.08.047.
  24. Coppola R, Succi M, Tremonte P, Reale A, Salzano G, Sorrentino E. Antibiotic susceptibility of Lactobaillus rhamnosus strains isolated from parmigiano Reggiano cheese. Le Lait. 2005;85:193-204. https://doi.org/10.1051/lait:2005007.
  25. Han J, Chen D, Li S, Li X, Zhou W-W, Zhan B, et al. Antibiotic susceptibility of potentially probiotic Lactobacillus strains. Ital J Food Sci. 2015;27:283-289. https://doi.org/10.14674/1120-1770/ijfs.v270.
  26. Charteris WP, Kelly PM, Morelli L, Collins JK. Antibiotic susceptibility of potentially probiotic Lactobacillus species. J Food Prot. 1998;61:1636-1643. https://doi.org/10.4315/0362-028X-61.12.1636.
  27. Beyan A, Ketema T, Bacha K. Antimicrobial susceptibility pattern of lactic acid bacteria isolated from Ergo, a traditional ethiopian fermented milk, jimma, south west ethiopia. Ethiop J Educ & Sc. 2011;7:9-17.
  28. Lonkar P, Harne SD, Kalorey DR, Kurkure NV. Isolation, in vitro antibacterial activity, bacterial sensitivity and plasmid profile of Lactobacilli. Asian-Aust J Anim Sci. 2005;18:1336-1342. https://doi.org/10.5713/ajas.2005.1336.
  29. NECA. Research for the safe use of probiotics. Seoul: NECA; 2016. Available from: https://www.bioin.or.kr/InnoDS/data/upload/tech/e7253c4c84624931aa91432dd0387637.pdf.
  30. Zmora N, Zilbeman-Schapira G, Suez J, Mor U, Dori-Bashiardes S, Kotler E, et al. Personalized gut mucosal colonization resistance to empiric priobiotics is associated with unique host and microbiome features. Cell. 2018;174:1388-1405. https://doi.org/10.1016/j.cell.2018.08.041.

Cited by

  1. Probiotics의 병원성미생물에 대한 길항적 억제효과 vol.20, pp.12, 2019, https://doi.org/10.5762/kais.2019.20.12.110
  2. Antagonistic Effects of Lactobacillus plantarum on Candida albicans in ME-180 Cervical Carcinoma Cell Culture vol.13, pp.11, 2019, https://doi.org/10.5812/jjm.112449