DOI QR코드

DOI QR Code

Design for Back-up of Ship's Navigation System using UAV in Radio Frequency Interference Environment

전파간섭환경에서 UAV를 활용한 선박의 백업항법시스템 설계

  • Park, Sul Gee (Korea Reserach Institute of Ships and Ocean Engineering) ;
  • Son, Pyo-Woong (Korea Reserach Institute of Ships and Ocean Engineering)
  • 박슬기 (한국해양과학기술원 부설 선박해양플랜트연구소) ;
  • 손표웅 (한국해양과학기술원 부설 선박해양플랜트연구소)
  • Received : 2019.08.10
  • Accepted : 2019.08.23
  • Published : 2019.08.30

Abstract

Maritime back-up navigation system in port approach requires a horizontal accuracy of 10 meters in IALA (International Association of Lighthouse Authorities) recommendations. eLoran which is a best back-up navigation system that satisfies accuracy requirement has poor navigation performance depending signal environments. Especially, noise caused by multipath and electronic devices around eLoran antenna affects navigation performance. In this paper, Ship based Navigation Back-up system using UAV on Interference is designed to satisfy horizontal accuracy requirement. To improve the eLoran signal environment, UAVs are equipped with camera, IMU sensor and eLoran antenna and receivers. This proposed system is designed to receive eLoran signal through UAV-based receiver and control UAV's position and attitude within Landmark around area. The ship-based positioning using eLoran signal, vision and attitude information received from UAV satisfy resilient and robust navigation requirements.

국제항로표지협회에서는 해양 분야에서 활용하는 백업항법시스템의 경우 항만 입출항시 10 m의 수평정확도를 보장하도록 요구하고 있다. 대표적인 해양분야의 백업항법시스템인 eLoran은 10 m 이내의 수평 정확도를 만족함이 증명되었지만, 수신환경에 따라 항법성능이 저하되기도 한다. 특히 수신 안테나 주변의 잡음 및 멀티패스 등으로 인한 요인으로 인해 특정 상황에서는 항법 자체가 불가능해지기도 한다. 본 논문에서는 이러한 환경에서 항만입출항 조건의 수평정확도 요구성능을 만족하기 위하여 UAV(unmanned aerial vehicles)를 활용한 선박의 백업항법시스템을 설계하였다. eLoran 신호 수신에 영향을 주는 주변 환경의 영향을 감소시키기 위하여 UAV에 카메라, IMU센서, eLoran 안테나 및 수신기를 장착하였으며, 선박의 안테나보다 높은 곳에서 카메라를 이용하여 랜드마크를 추적하고 일정 범위 내에서 eLoran 신호 수신과 위치 및 자세를 제어하도록 설계하였다. 선박에서는 UAV로부터 수신한 영상 및 자세 정보와 eLoran 신호를 이용한 선박기반 측위결과를 이용해 항만 입출항 시 수평정확도 요구성능을 만족할 수 있다.

Keywords

References

  1. A. Grant, P. Williams, N. Ward and S. Basker, "GPS jamming and the impact on maritime navigation," The Journal of Navigation, Vol. 62, No. 2, pp.173-187, Apr. 2009. https://doi.org/10.1017/S0373463308005213
  2. M. L. Psiaki and T. E. Humphreys (2016.July). Protecting GPS from spoofers Is critical to the future of navigation. IEEE spectrum [Internet]. Available: https://spectrum.ieee.org/telecom/security/protecting-gps-from-spoofers-is-critical-to-the-future-of-navigation
  3. F. D. Nunes and F. M. G. Sousa, “GNSS blind interference detection based on fourth-order autocumulants,” IEEE Transactions on Aerospace and Electronic System, Vol. 52, No. 5, pp. 2574-2586, Oct. 2016. https://doi.org/10.1109/TAES.2016.150499
  4. M. Wildemeersch, C. H. Slump, and A. Rabbachin, “Acquisition of GNSS signals in urban interference environment,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 50, No. 2, pp. 1078-1091, Apr. 2014. https://doi.org/10.1109/TAES.2013.120094
  5. IALA, IALA Recommendation R-129 On GNSS vulnerability and mitigation measures, international association of marine aids to navigation and lighthouse authorities, Edition 3, 2012.
  6. G. Offermans, E. Johannessen, S. Bartlett, C. Schue, A. Grebnev, M. Bransby, P. Williams, and C. Hargreaves, "eLoran initial operational capability in the united kingdom-first results," in Proceeding of the International Technical Meetings of ION, California: CA, pp. 27-39, 2015.
  7. P. W. Son, S. H. Park, K. Y. Seo, Y. H. Han, and J. Seo, "Development of the Korean eLoran testbed and analysis of its expected positioning accuracy," in Proceeding of IALA Conference, Incheon: Korea, pp.1-10, 2018.
  8. P. W. Son, J. H. Rhee, and J. Seo, "Novel multichain-based Loran positioning algorithm for resilient navigation," in IEEE Transactions on Aerospace and Electronic Systems, Vol. 54, No. 2, pp.666-679, Apr. 2018. https://doi.org/10.1109/TAES.2017.2762438
  9. P. W. Son, J. H. Rhee, Y. H. Han, K. Y. Seo, and J. Seo, "Preliminary study of multichain-based Loran positioning accuracy for dynamic users in South Korea," in Proceeding of IEEE/ION PLANS 2018, Monterey: CA, pp. 1034-1038, Apr. 2018.
  10. S. G. Park and P. W. Son, "Study on compensation method of anisotropic H-field antenna," Journal of Navigation and Port Research, Vol. 43, No. 3, pp.172-178, Jun. 2019. https://doi.org/10.5394/KINPR.2019.43.3.172
  11. P. W. Son, S. G. Park, K. Y. Seo, S. H. Park, and T. H. Fang, "Preliminary study of the re-radiation effect of Loran signal to improve the positioning accuracy," in Proceeding of European Navigation Conference 2019, Warsaw: Poland, pp.1-4, 2019.
  12. S. B. Shon, B. R. Lee, J. H. Kim, and C. D. Kee, "Vision-based real-time target localization for single antenna GPS-guided UAV," IEEE Transactions on Aerospace and Electronic Systems, Vol. 44, No. 4, pp.1391-1401, Oct. 2008. https://doi.org/10.1109/TAES.2008.4667717
  13. V. Sazdovski, P. M. G. Silson, and A. Tsourdos, "Attitude determination from single camera vector observations," in Proceeding of 2010 5th IEEE International Conference Intelligent Systems, London: UK, pp.1-6, 2010.
  14. L. Zhang, F. Deng, J. Chen, Y. Bi, S. K. Phang, X. Chen, and B. M. Chen, "Vision-Based target three-dimensional geolocation using unmanned aerial vehicles," IEEE Transactions on Industrial Electronics, Vol. 65, No. 10, pp.8052-8061, Oct. 2018. https://doi.org/10.1109/TIE.2018.2807401
  15. S. G. Park, S. H. Park, and D. J. Cho, "Vision aided navigation for autonomous underwater vehicle," in Proceeding of the 2011 International Technical Meetings of The Institute of Navigation, San Diego: CA, pp. 696-702, 2011.

Cited by

  1. The Power Amplifier Control Design of eLoran Transmitter vol.10, pp.3, 2021, https://doi.org/10.11003/jpnt.2021.10.3.229