DOI QR코드

DOI QR Code

Recycling of useful Materials from Fly Ash of Coal-fired Power Plant

석탄화력발전소에서 발생되는 비회로부터 유용성분의 회수

  • Kim, Dul-Sun (Department of Chemical Engineering, Gyeongsang National University) ;
  • Han, Gwang Su (Department of Environment Protection, Gyeongsang National University) ;
  • Lee, Dong-Keun (Department of Chemical Engineering, Gyeongsang National University)
  • 김둘선 (경상대학교 화학공학과) ;
  • 한광수 (경상대학교 환경보전학과) ;
  • 이동근 (경상대학교 화학공학과)
  • Received : 2019.08.12
  • Accepted : 2019.09.01
  • Published : 2019.09.30

Abstract

Upon the combustion of coal particles in a coal-fired power plant, fly ash (80%) and bottom ash (20%) are unavoidably produced. Most of the ashes are, however, just dumped onto a landfill site. When the landfill site that takes the fly ash and bottom ash is saturated, further operation of the coal-fired power plant might be discontinued unless a new alternative landfill site is prepared. In this study, wet flotation separation system (floating process) was employed in order to recover unburned carbon (UC), ceramic microsphere (CM) and cleaned ash (CA), all of which serving as useful components within fly ash. The average recovered fractions of UC, CM, and CA from fly ash were 92.10, 75.75, and 69.71, respectively, while the recovered fractions of UC were higher than those of CM and CA by 16% and 22%, respectively. The combustible component (CC) within the recovered UC possessed a weight percentage as high as 52.54wt%, whereas the burning heat of UC was estimated to be $4,232kcal\;kg^{-1}$. As more carbon-containing UC is recovered from fly ash, UC is expected to be used successfully as an industrial fuel. Owing to the effects of pH, more efficient chemical separations of CM and CA, rather than UC, were obtained. The average $SiO_2$ contents within the separated CM and CA had a value of 53.55wt% and 78.66wt%, respectively, which is indicative of their plausible future application as industrial materials in many fields.

석탄화력 발전시 석탄은 석탄회로 발생하게 되는데 비회(fly ash)가 80%, 저회(bottom ash)가 20% 비율로 발생된다. 그러나 이들 대부분은 재활용되지 못하고 매립장에 전량 폐기되고 있고, 비회 및 저희를 매립하는 매립장이 포화될 경우 새로운 대체 매립장을 건설하지 못하는 한 석탄화력발전소의 운영을 중지해야 하는 경우가 발생할 수 있다. 본 연구에서는 비회를 재활용하여 자원화하기 위해 습식 부유선별기술(부선과정)을 이용하여 비회 내 유용성분{미연탄소(unburned carbon, UC), 뮬라이트(ceramic microsphere, CM), 실리카(cleaned ash, CA)}을 회수하였으며, 회수된 유용성분들의 특성분석으로 산업 소재로 재활용 가능성을 조사하였다. 비회로부터 회수된 유용성분의 회수율은 UC 92.10%, CM 75.75%, CA 69.71%로 부선과정을 통하여 UC가 다른 성분보다 회수율이 16 ~ 22% 더 우수한 것으로 나타났다. UC의 연소가능성분(combustible component, CC)은 52.54wt%, 발열량도 $4,232kcal\;kg^{-1}$로 높아서 석탄 기준 C의 함량 100%일 경우 $8,100kcal\;kg^{-1}$로 감안할 때 산업용 연료로 사용이 가능할 것으로 사료된다. CM과 CA의 분리는 pH의 영향으로 UC 보다는 화학적 분리가 효과적이었으며, 회수된 CA의 $SiO_2$ 함량은 78.66wt%, CM의 $SiO_2$ 함량은 53.55wt%로 나타나 산업용 소재로 재활용 가능성을 확인할 수 있었다.

Keywords

References

  1. Zyrkowski, M., Neto, R. C., Santos, L. F., and Witkowski, K., "Characterization of Fly Ash Cenospheres from Coal-fired Power Plant Unit," Fuel, 174, 49-53 (2016). https://doi.org/10.1016/j.fuel.2016.01.061
  2. Ahmaruzzaman, M., "A Review on the Utilization of Fly Ash," Prog. Energy Combust. Sci., 36, 327-363 (2010). https://doi.org/10.1016/j.pecs.2009.11.003
  3. Maeng, J. H., Kim, T. Y., and Suh, D. H., "Minimizing Environmental Impact in Accordance with the Thermal Power Plant Ash Management (I)," Korea Environ. Inst. (2014).
  4. Yao, Z. T., Ji, X. S., Sarker, P. K., Tang, J. H., Ge, L. Q., Xia, M. S., and Xi, Y. Q., "A Comprehensive Review on the Applications of Coal Fly Ash," Earth-Sci. Rev., 141, 105-121 (2015). https://doi.org/10.1016/j.earscirev.2014.11.016
  5. Cho, H., Maeng, J.-H., and Kim, E.-Y., "Studies on Expanding Application for the Recycling of Coal Ash in Domestic," J. Environ. Impact Assess., 26(6), 563-573 (2017). https://doi.org/10.14249/EIA.2017.26.6.563
  6. Suh, D.-H., and Maeng, J.-H., "A Study on Expanding the Recycling of Coal Ash for Minimizing Environmental Impact Imposed by the Establishment of Thermal Power Plant Ash Ponds," J. Environ. Impact Assess., 24(5), 472-486 (2015). https://doi.org/10.14249/eia.2015.24.5.472
  7. Na, C.-K., and Kim, S.-B., "Reusability of Unburned Carbon Separated from Coal Fly Ash as an Activated Carbon," J. Korea Soc. Waste Manage., 21(4), 328-335 (2004).
  8. Kim, W. Y., Ji, H. B., Yang, T. Y., Yoon, S. Y., and Park, H. C., "Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash," J. Korean Ceram. Soc., 47(2), 151-156 (2010). https://doi.org/10.4191/KCERS.2010.47.2.151
  9. Seho, S. L., Lee, Y.-S., An, E.-M., and Cho, S.-B., "Application of Unburned Carbon Produced from Seochun Power Plant," J. Korean Inst. Resour. Recycl., 23(1), 40-47 (2014). https://doi.org/10.7844/kirr.2014.23.1.40
  10. Jeon, H.-S., Lee, E.-S., Baek, S.-H., and Kim, B.-G., "Recovery of High Grade Molybdenite Concentrate for Lubricant Use by Froth Flotation," J. Korean Soc. Miner. Energy Resour. Eng., 53(3), 219-230 (2016). https://doi.org/10.12972/ksmer.2016.53.3.219
  11. Choi, H.-K., Kim, S.-G., Kim, B.-G., and Jeon, H.-S., "Study on the Recovery of High-grade Tin Concentrate by Froth Flotation," J. Korean Soc. Miner. Energy Resour. Eng., 52(5), 469-477 (2015). https://doi.org/10.12972/ksmer.2015.52.5.469
  12. Demir, U., Yamik, A., Kelebek, S., Oteyaka, B., Ucar, A., and Sahbaz, O., "Characterization and Column Flotation of Bottom Ashes from Tuncbilek Power Plant," Fuel, 87, 666-672 (2008). https://doi.org/10.1016/j.fuel.2007.05.040
  13. Emre Altun, N., Xiao, C., and Hwang, J.-Y., "Separation of Unburned Carbon from Fly Ash using a Concurrent Flotation Column," Fuel Process. Technol., 90, 1464-1470 (2009). https://doi.org/10.1016/j.fuproc.2009.06.029
  14. Zhou, F., Yan, C., Wang, H., Zhou, S., and Liang, H., "The Result of Surfactants on Froth Flotation of Unburned Carbon from Coal Fly Ash," Fuel, 190, 182-188 (2017). https://doi.org/10.1016/j.fuel.2016.11.032
  15. Han, G., Yang, S., Peng, W., Huang, Y., Wu, H., Chai, W., and Liu, J., "Enhanced Recycling and Utilization of Mullite from Coal Fly Ash with a Flotation and Metallurgy Process," J. Cleaner Prod., 178, 804-813 (2018). https://doi.org/10.1016/j.jclepro.2018.01.073
  16. Aksay, I. A., Dabbs, D. M., and Sarikaya, M., "Mullite for Structural, Electronic, and Optical Applications," J. Am. Ceram. Soc., 74, 2343-2358 (1991). https://doi.org/10.1111/j.1151-2916.1991.tb06768.x

Cited by

  1. 고무증량재 및 플라스틱 충진재의 대체재로 UC와 CM의 재활용 vol.27, pp.1, 2019, https://doi.org/10.7464/ksct.2021.27.1.24