DOI QR코드

DOI QR Code

Electroconvective Instability on Undulated Ion-selective Surface

파상형 이온 선택 표면상의 전기와류 불안정성

  • Lee, Hyomin (Department of Chemical and Biological Engineering, Jeju National University)
  • 이효민 (제주대학교 생명화학공학과)
  • Received : 2019.07.10
  • Accepted : 2019.07.25
  • Published : 2019.10.01

Abstract

In this work, the electrokinetic interactions between the undulated structure of an ion-selective membrane and electroconvective instability has been studied using numerical analysis. Using finite element method, electric field-ionic species transport-flow field were analyzed by fully-coupled manner. Through the numerical study, the Dukhin's mode as the mechanism of undulated surface for the electroconvective instability were proven. The Dukhin's mode which competes with Rubinstein's mode has roles of (i) decreasing transition voltage to overlimiting regime and (ii) non-linearly increasing of overlimiting current. Also, (iii) the mixing efficiency is enhanced by removal mechanism of high-frequency Fourier mode of the electroconvective instability. Conclusively, the undulated ion-selective surface would provide energy-efficient mechanism for ion-selective transport systems such as electrodialysis, electrochemical battery, etc.

이온 선택성 표면이 가지는 파상구조와 전기와류 불안정성 간의 전기동역학적 상호작용을 수치해석을 통하여 연구하였다. 유한요소법을 이용하여 전기장-이온 이동현상-유동장을 완전결합 해석을 하였다. 이를 통해 파상구조가 제공하는 전기와류 생성 기작인 Dukhin's mode의 유효성 및 역할을 제시하였다. Runinstein's mode와 경쟁관계에 놓이는 Dukhin's mode는 (i) 과한계 영역으로의 전이 전압을 낮춰주고 (ii) 혼돈계인 과한계 영역에서 전류를 비선형적으로 증가시켜준다. 또한, (iii) 전기와류 불안정성에서 발생하는 비효율적 혼합의 원인인 고주파수 Fourier 성분을 배제하여 전기와류의 혼합 효율을 상승시켜 준다. 결론적으로, 본 연구에서 제시한 기작은 전기투석, 화학전지 등의 이온 선택성 이동현상 시스템에 대한 에너지 효율적인 기작으로 활용 가능할 것이다.

Keywords

References

  1. Schoch, R. B., Han, J. and Renaud, P., "Transport Phenomena in Nanofluidics," Rev. Mod. Phys., 80(3), 839-883(2008). https://doi.org/10.1103/RevModPhys.80.839
  2. Probstein, R. F., Physicochemical Hydrodynamics: An Introduction. 2nd ed., Wiley, Hoboken, NJ(2005).
  3. Rubinstein, I. and Zaltzman, B., "Electro-Osmotically Induced Convection at a Permselective Membrane," Phys. Rev. E, 62(2), 2238-2251(2000). https://doi.org/10.1103/PhysRevE.62.2238
  4. Rubinstein, I. and Zaltzman, B., "Electro-osmotic Slip of The Second Kind and Instability in Concentration Polarization at Electrodialysis Membranes," Math. Models Methods Appl. Sci., 11(2), 263-300(2001). https://doi.org/10.1142/S0218202501000866
  5. Rubinstein, I. and Zaltzman, B., "Extended Space Charge in Concentration Polarization," Adv. Colloid Interface Sci., 159(2), 117-129 (2010). https://doi.org/10.1016/j.cis.2010.06.001
  6. Kim, S. J., Wang, Y.-C., Lee, J. H., Jang, H. and Han, J., "Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel," Phys. Rev. Lett., 99(4), 044501(2007). https://doi.org/10.1103/PhysRevLett.99.044501
  7. Rubinstein, S. M., Manukyan, G., Staicu, A., Rubinstein, I., Zaltzman, B., Lammertink, R. G. H., Mugele, F. and Wessling, M., "Direct Observation of a Nonequilibrium Electro-Osmotic Instability," Phys. Rev. Lett., 101(23), 236101(2008). https://doi.org/10.1103/PhysRevLett.101.236101
  8. Cho, I., Kim, W., Kim, J., Kim, H.-Y., Lee, H. and Kim, S. J., "Non-Negligible Diffusio-Osmosis Inside an Ion Concentration Polarization Layer," Phys. Rev. Lett., 116(25), 254501(2016). https://doi.org/10.1103/PhysRevLett.116.254501
  9. Kwak, R., Pham, V. S., Lim, K. M. and Han, J., "Shear Flow of an Electrically Charged Fluid by Ion Concentration Polarization: Scaling Laws for Electroconvective Vortices," Phys. Rev. Lett., 110(11), 114501(2013). https://doi.org/10.1103/PhysRevLett.110.114501
  10. Dydek, E. V., Zaltzman, B., Rubinstein, I., Deng, D. S., Mani, A. and Bazant, M. Z., "Overlimiting Current in a Microchannel," Phys. Rev. Lett., 107(11), 118301(2011). https://doi.org/10.1103/PhysRevLett.107.118301
  11. Pham, V. S., Li, Z., Lim, K. M., White, J. K. and Han, J., "Direct Numerical Simulation of Electroconvective Instability and Hysteretic Current-voltage Response of a Permselective Membrane," Phys. Rev. E, 86(4), 046310(2012). https://doi.org/10.1103/PhysRevE.86.046310
  12. Druzgalski, C. L., Andersen, M. B. and Mani, A., "Direct Numerical Simulation of Electroconvective Instability and Hydrodynamic Chaos Near An ion-selective surface," Phys. Fluids, 25(11), 110804 (2013). https://doi.org/10.1063/1.4818995
  13. Demekhin, E. A., Nikitin, N. V. and Shelistov, V. S., "Direct Numerical Simulation of Electrokinetic Instability and Transition to Chaotic Motion," Phys. Fluids, 25(12), 122001(2013). https://doi.org/10.1063/1.4843095
  14. Davidson, S. M., Andersen, M. B. and Mani, A., "Chaotic Induced-Charge Electro-Osmosis," Phys. Rev. Lett., 112(12), 128302(2014). https://doi.org/10.1103/PhysRevLett.112.128302
  15. Mareev, S. A., Butylskii, D. Y., Pismenskaya, N. D., Larchet, C., Dammak, L. and Nikonenko, V. V., "Geometric Heterogeneity of Homogeneous Ion-exchange Neosepta Membranes," J. Membrane Sci., 563, 768-776(2018). https://doi.org/10.1016/j.memsci.2018.06.018
  16. Pundik, T., Rubinstein, I. and Zaltzman, B., "Bulk Electroconvection in Electrolyte," Phys. Rev. E, 72(6), 061502(2005). https://doi.org/10.1103/PhysRevE.72.061502
  17. Chang, H. C., Demekhin, E. A. and Shelistov, V. S., "Competition Between Dukhin's and Rubinstein's Electrokinetic Modes," Phys. Rev. E, 86(4), 046319(2012). https://doi.org/10.1103/PhysRevE.86.046319
  18. de Valenca, J., Jogi, M., Wagterveld, R. M., Karatay, E., Wood, J. A. and Lammertink, R. G. H., "Confined Electroconvective Vortices at Structured Ion Exchange Membranes," Langmuir, 34(7), 2455-2463(2018). https://doi.org/10.1021/acs.langmuir.7b04135
  19. Rubinstein, I. and Zaltzman, B., "Equilibrium Electroconvective Instability," Phys. Rev. Lett., 114(11), 114502(2015). https://doi.org/10.1103/PhysRevLett.114.114502
  20. Druzgalski, C. and Mani, A., "Statistical Analysis of Electroconvection Near an Ion-selective Membrane in the Highly Chaotic Regime," Phys. Rev. Fluids, 1(7), 073601(2016). https://doi.org/10.1103/PhysRevFluids.1.073601
  21. Karatay, E., Druzgalski, C. L. and Mani, A., "Simulation of Chaotic Electrokinetic Transport: Performance of Commercial Software Versus Custom-built Direct Numerical Simulation Codes," J. Colloid Interface Sci., 446, 67-76(2015). https://doi.org/10.1016/j.jcis.2014.12.081
  22. Davidson, S. M., Wessling, M. and Mani, A., "On the Dynamical Regimes of Pattern-Accelerated Electroconvection," Sci. Rep., 6, 22505(2016). https://doi.org/10.1038/srep22505
  23. Rubinstein, I. and Shtilman, L., "Voltage Against Current Curves of Cation Exchange Membranes," J. Chem. Soc. Faraday Trans., 75(0), 231-246(1979). https://doi.org/10.1039/f29797500231
  24. Abu-Rjal, R., Prigozhin, L., Rubinstein, I. and Zaltzman, B., "Equilibrium Electro-convective Instability in Concentration Polarization: The Effect of Non-equal Ionic Diffusivities and Longitudinal Flow," Russ. J. Eleectrochem., 53(9), 903-918(2017). https://doi.org/10.1134/S1023193517090026
  25. Kim, S. J., Song, Y.-A. and Han, J., "Nanofluidic Concentration Devices for Biomolecules Utilizing Ion Concentration Polarization: Theory, Fabrication, and Applications," Chem. Sov. Rev., 39(3), 912-922(2010). https://doi.org/10.1039/b822556g
  26. Masliyah, J. H. and Bhattacharjee, S. Electrokinetic and Colloid Transport Phenomena. Wiley, Hoboken, NJ(2006).

Cited by

  1. 일정 전위 모드에서의 전기와류 불안정성에 대한 시간-분해 해석 vol.58, pp.2, 2020, https://doi.org/10.9713/kcer.2020.58.2.319