DOI QR코드

DOI QR Code

장기 관측 에디 플럭스 자료의 연속성 확보에 대하여: 개회로 및 봉폐회로 기체분석기의 야외 상호 비교

On Securing Continuity of Long-Term Observational Eddy Flux Data: Field Intercomparison between Open- and Enclosed-Path Gas Analyzers

  • 강민석 (국가농림기상센터) ;
  • 김준 (서울대학교 협동과정 농림기상학전공) ;
  • 양현영 (서울대학교 협동과정 농림기상학전공) ;
  • 임종환 (국립산림과학원 기후변화생태과) ;
  • 천정화 (국립산람과학원 연구기획과) ;
  • 문민규 (보스턴대학교 지구환경학부)
  • Kang, Minseok (National Center for AgroMeteorology) ;
  • Kim, Joon (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University) ;
  • Yang, Hyunyoung (Interdisciplinary Program in Agricultural & Forest Meteorology, Seoul National University) ;
  • Lim, Jong-Hwan (Forest Ecology & Climate Change Division, National Institute of Forest Science) ;
  • Chun, Jung-Hwa (Research Planning & Coordination Division, National Institute of Forest Science) ;
  • Moon, Minkyu (Department of Earth and Environment, Boston University)
  • 투고 : 2019.09.16
  • 심사 : 2019.09.27
  • 발행 : 2019.09.30

초록

장기간 관측된 자료를 기반으로 그 시계열의 장주기나 경향을 분석할 때 선행되어야 할 조건은 과거에 관측된 자료와 현재에 관측된 자료가 비교 가능해야 한다는 점이다. 이러한 자료의 연속성을 확보하기 위해서는 장기 관측에 사용된 기기들 간에 호환성이 보장되어야 한다. 우리나라에서 가장 긴 에디 공분산 플럭스 관측 역사를 가지고 있는 광릉 활엽수림에서 다양한 기체분석기가 플럭스 관측에 사용된 가운데, 2015년 7월 과거 10년 이상 사용되었던 개회로 기체 분석기(Model LI-7500, LI-COR, Inc.)에서 봉폐회로 기체분석기(Model EC155, Campbell Scientific, Inc.)로 교체되었다. 기체분석기가 완전히 교체되기 전 두 기체분석기로 동시에 관측되었던 2015년 8월부터 12월까지 5개월의 기간 동안 모은 이산화탄소와 수증기(잠열) 플럭스를 서로 비교해보았다. 이산화탄소 플럭스는 일평균기온이 영상이었던 시기에 기체분석기 간의 큰 차이는 없었으나, 영하로 떨어지면서 개회로 기체분석기의 경우 기기에서 발생하는 열 때문에 이산화탄소 플럭스가 양의 값(이산화탄소 발원)에서 0 또는 음의 값(이산화탄소 중립 또는 흡원)으로 편향됨이 확인되었다. 잠열 플럭스는 봉폐회로 기체분석기에서 관측된 값이 주파수 반응 보정을 통해 수증기의 튜브 감쇄 효과를 보정하였음에도 불구하고, 개회로 기체분석기에서 관측된 값보다 평균적으로 9% 정도 작았으며, 5개월 동안 적산 시 20% 이상 차이(봉폐회로: 166 mm, 개회로 211 mm)났다. 본 연구결과는 광릉 활엽수림에서 관측된 장기 플럭스 자료 분석 시, 개회로 기체분석기의 겨울철 가열 효과에 대한 추가적인 공기밀도 보정의 필요성과 함께 봉폐회로 기체분석기에서 나타나는 잠열 플럭스의 과소평가 경향에 대한 이해가 수반되어야 함을 시사한다.

Analysis of a long cycle or a trend of time series data based on a long-term observation would require comparability between data observed in the past and the present. In the present study, we proposed an approach to ensure the compatibility among the instruments used for the long-term observation, which would allow to secure continuity of the data. An open-path gas analyzer (Model LI-7500, LI-COR, Inc., USA) has been used for eddy covariance flux measurement in the Gwangneung deciduous forest for more than 10 years. The open-path gas analyzer was replaced by an enclosed-path gas analyzer (Model EC155, Campbell Scientific, Inc., USA) in July 2015. Before completely replacing the gas analyzer, the carbon dioxide ($CO_2$) and latent heat fluxes were collected using both gas analyzers simultaneously during a five-month period from August to December in 2015. It was found that the $CO_2$ fluxes were not significantly different between the gas analyzers under the condition that the daily mean temperature was higher than $0^{\circ}C$. However, the $CO_2$ flux measured by the open-path gas analyzer was negatively biased (from positive sign, i.e., carbon source, to 0 or negative sign, i.e., carbon neutral or sink) due to the instrument surface heating under the condition that the daily mean temperature was lower than $0^{\circ}C$. Despite applying the frequency response correction associated with tube attenuation of water vapor, the latent heat flux measured by the enclosed-path gas analyzer was on average 9% smaller than that measured by the open-path gas analyzer, which resulted in >20% difference of the sums over the study period. These results indicated that application of the additional air density correction would be needed due to the instrument heat and analysis of the long-term observational flux data would be facilitated by understanding the underestimation tendency of latent heat flux measurements by an enclosed-path gas analyzer.

키워드

참고문헌

  1. Burba, G. G., D. K. McDermitt, A. Grelle, D. J. Anderson, and L. Xu, 2008: Addressing the influence of instrument surface heat exchange on the measurements of $CO_2$ flux from open-path gas analyzers. Global Change Biology 14, 1854-1876. https://doi.org/10.1111/j.1365-2486.2008.01606.x
  2. Choi, T., J. Kim, and J. Lim, 2003: $CO_2$ Exchange in Kwangneung broadleaf deciduous forest in a hilly terrain in the summer of 2002. Korean Journal of Agricultural and Forest Meteorology 5, 70-80.
  3. Choi, T., J. I. Yun, J.-H. Lim, E.-W. Park, and J. Kim, 2002: Variability of calibration factors for open-path $CO_2$/$H_2O$ infrared gas analyzer and its effect on long-term flux measurement. Korean Journal of Agricultural and Forest Meteorology 4, 103-113.
  4. Fratini, G., A. Ibrom, N. Arriga, G. Burba, and D. Papale, 2012: Relative humidity effects on water vapour fluxes measured with closed-path eddy-covariance systems with short sampling lines. Agricultural and Forest Meteorology 165, 53-63. https://doi.org/10.1016/j.agrformet.2012.05.018
  5. Hong, J., and J. Kim, 2011: Impact of the Asian monsoon climate on ecosystem carbon and water exchanges: a wavelet analysis and its ecosystem modeling implications. Global change biology 17, 1900-1916. https://doi.org/10.1111/j.1365-2486.2010.02337.x
  6. Hong, J., D. Lee, and J. Kim, 2005: Lessons from FIFE on scaling of surface fluxes at Gwangneung forest site. Korean Journal of Agricultural and Forest Meteorology 7, 4-14.
  7. Hong, J., J. Kim, D. Lee, and J. H. Lim, 2008: Estimation of the storage and advection effects on $H_2O$ and $CO_2$ exchanges in a hilly KoFlux forest catchment. Water Resources Research 44, W01426. https://doi.org/10.1029/2007WR006408
  8. Horst, T., and D. Lenschow, 2009: Attenuation of scalar fluxes measured with spatially-displaced sensors. Boundary-Layer Meteorology 130, 275-300. https://doi.org/10.1007/s10546-008-9348-0
  9. Kang, M., H. Kwon, J.-H. Lim, and J. Kim, 2009a: Understory evapotranspiration measured by eddy-covariance in Gwangneung deciduous and coniferous forests. Korean Journal of Agricultural and Forest Meteorology 11, 233-246. https://doi.org/10.5532/KJAFM.2009.11.4.233
  10. Kang, M., H. Kwon, J. H. Cheon, and J. Kim, 2012: On estimating wet canopy evaporation from deciduous and coniferous forests in the Asian monsoon climate. Journal of Hydrometeorology 13, 950-965. https://doi.org/10.1175/JHM-D-11-07.1
  11. Kang, M., B. L. Ruddell, C. Cho, J. Chun, and J. Kim, 2017: Identifying $CO_2$ advection on a hill slope using information flow. Agricultural and Forest Meteorology 232, 265-278. https://doi.org/10.1016/j.agrformet.2016.08.003
  12. Kang, M., J. Kim, B. Malla Thakuri, J. Chun, and C. Cho, 2018a: New gap-filling and partitioning technique for $H_2O$ eddy fluxes measured over forests. Biogeosciences 15, 631-647. https://doi.org/10.5194/bg-15-631-2018
  13. Kang, M., J. Kim, S.-H. Lee, J. Kim, J.-H. Chun, and S. Cho, 2018b: Changes and improvements of the standardized eddy covariance data processing in KoFlux. Korean Journal of Agricultural and Forest Meteorology 20, 5-17. https://doi.org/10.5532/KJAFM.2018.20.1.5
  14. Kang, M., J. Kim, B. M. Thakuri, J. Chun, and C. Cho, 2019: Modification of the moving point test method for nighttime eddy $CO_2$ flux filtering on hilly and complex terrains. MethodsX 6, 1207-1217. https://doi.org/10.1016/j.mex.2019.05.012
  15. Kang, M., S. Park, H. Kwon, H. T. Choi, Y.-J. Choi, and J. Kim, 2009b: Evapotranspiration from a deciduous forest in a complex terrain and a heterogeneous farmland under monsoon climate. Asia-Pacific Journal of Atmospheric Sciences 45, 175-191.
  16. Kang, M., H. Kwon, J. Kim, H. S. Kim, Y. Ryu, S.-J. Lee, and T. Choi 2018c: Korean flux monitoring network's past, present, and future. Korean Journal of Agricultural and Forest Meteorology 20, 1-4. https://doi.org/10.5532/KJAFM.2018.20.1.1
  17. Kim, J., 2005: KoFlux 2004 synthesis: Coping with climate change protocols by understanding carbon and water cycles in Korean ecosystems - Foreword. Korean Journal of Agricultural and Forest Meteorology 7, 1-3.
  18. Kim, J., 2007: KoFlux 2006 synthesis: HydroKorea and CarboKorea - Foreword. Korean Journal of Agricultural and Forest Meteorology 9, 71-74. https://doi.org/10.5532/KJAFM.2007.9.2.071
  19. Kim, J., F. Chen, and S. Kim, 2009: Foreword. Asia-Pacific Journal of Atmospheric Sciences 45, 109-111.
  20. Kim, J., and C.-S. Rho, 2003: Foreword. Korean Journal of Agricultural and Forest Meteorology 5, 49-50.
  21. Kim, J., D. Lee, J. Hong, S. Kang, S. J. Kim, S. K. Moon, J. H. Lim, Y. Son, J. Lee, and S. Kim, 2006: HydroKorea and CarboKorea: cross-scale studies of ecohydrology and biogeochemistry in a heterogeneous and complex forest catchment of Korea. Ecological Research 21, 881-889. https://doi.org/10.1007/s11284-006-0055-3
  22. Kwon, H., and B.-L. Lee, 2010: KoFlux 2010: Domestic surface flux measurement-model fusion. Korean Journal of Agricultural and Forest Meteorology 12, 238-240. https://doi.org/10.5532/KJAFM.2010.12.4.238
  23. Kwon, H., J. Kim, J. Hong, and J.-H. Lim, 2010: Influence of the Asian monsoon on net ecosystem carbon exchange in two major ecosystems in Korea. Biogeosciences 7, 1493-1504. https://doi.org/10.5194/bg-7-1493-2010
  24. Kwon, H., T. Y. Park, J. Hong, J. H. Lim, and J. Kim, 2009: Seasonality of net ecosystem carbon exchange in two major plant functional types in Korea. Asia-Pacific Journal of Atmospheric Sciences 45, 149-163.
  25. Kwon, H., S. Park, M. Kang, J. Yoo, R. Yuan, and J. Kim, 2007: Quality control and assurance of eddy covariance data at the two KoFlux sites. Korean Journal of Agricultural and Forest Meteorology 9, 260-267. https://doi.org/10.5532/KJAFM.2007.9.4.260
  26. Lee, D., S.-J. Kim, J.-H. Cheon, and J. Kim, 2010: Air sampling and isotope analyses of water vapor and $CO_2$ using multi-level profile system. Korean Journal of Agricultural and Forest Meteorology 12, 277-288. https://doi.org/10.5532/KJAFM.2010.12.4.277
  27. Lee, D., J. Kim, S.-J. Kim, S.-K. Moon, J.-S. Lee, J. Lim, Y. Son, S. Kang, S. H. Kim, K. Kim, N. C. Woo, B.-Y. Lee, and S. Kim, 2007: Lessons from cross-scale studies of water and carbon cycles in the Gwangneung forest catchment in a complex landscape of monsoon Korea. Korean Journal of Agricultural and Forest Meteorology 9, 149-160. https://doi.org/10.5532/KJAFM.2007.9.2.149
  28. Lim, J. H., J. H. Shin, G. T. Kim, J. H. Chun, and J. S. Oh, 2003: Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5, 101-109.
  29. Mauder, M., and T. Foken, 2006: Impact of post-field data processing on eddy covariance flux estimates and energy balance closure. Meteorologische Zeitschrift 15, 597-609. https://doi.org/10.1127/0941-2948/2006/0167
  30. Moncrieff, J. B., R. Clement, J. Finnigan, and T. Meyers, 2004: Averaging, detrending and filtering of eddy covariance time series. Handbook of micrometeorology: a guide for surface flux measurements (eds). Lee, X., W. J. Massman, and B. E. Law. Dordrecht: Kluwer Academic, 7-31.
  31. Moon, B.-K., S.-B. Ryoo, Y.-H. Youn, J. Lim, and J. Kim, 2003: Field intercomparison and calibration of net radiometers. Korean Journal of Agricultural and Forest Meteorology 5, 128-137.
  32. Papale, D., M. Reichstein, M. Aubinet, E. Canfora, C. Bernhofer, W. Kutsch, B. Longdoz, S. Rambal, R. Valentini, T. Vesala, and D. Yakir, 2006: Towards a standardized processing of Net Ecosystem Exchange measured with eddy covariance technique: algorithms and uncertainty estimation. Biogeosciences 3, 571-583. https://doi.org/10.5194/bg-3-571-2006
  33. Park, Y., 2001: Evapotranspiration and its controlling factors in the two adjacent forests in Kwangneung Arboretum. Master Thesis, Department of Atmospheric Sciences, Yonsei University, Seoul, South Korea.
  34. Park, Y., J. Kim, H. Lee, J. Lim, and W. Kwon, 2000: Changes in absorption coefficient of krypton hygrometer in long-term monitoring of evapotranspiration and its calibration using a dew point generator. Korean Journal of Agricultural and Forest Meteorology 2, 75-79.
  35. Reichstein, M., E. Falge, D. Baldocchi, D. Papale, M. Aubinet, P. Berbigier, C. Bernhofer, N. Buchmann, T. Gilmanov, A. Granier, T. Grunwald, K. Havrankova, H. Ilvesniemi, D. Janous, A. Knohl, T. Laurila, A. Lohila, D. Loustau, G. Matteucci, T. Meyers, F. Miglietta, J.-M. Ourcival, J. Pumpanen, S. Rambal, E. Rotenberg, M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, D. Yakir, and R. Valentini, 2005: On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Global Change Biology 11, 1424-1439. https://doi.org/10.1111/j.1365-2486.2005.001002.x
  36. van Dijk, A., A. F. Moene, and H. A. R. de Bruin, 2004: The principles of surface flux physics: Theory, practice and description of the EC Pack library. Meteorology and Air Quality Group, Wageningen University, Wageningen, The Netherlands, 99pp.
  37. Webb, E. K., G. I. Pearman, and R. Leuning, 1980: Correction of flux measurements for density effects due to heat and water vapour transfer. Quarterly Journal of the Royal Meteorological Society 106, 85-100. https://doi.org/10.1002/qj.49710644707
  38. Wilczak, J., S. Oncley, and S. Stage, 2001: Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorology 99, 127-150. https://doi.org/10.1023/A:1018966204465
  39. Yoo, J.-I., D.-H. Lee, J.-K. Hong, and J. Kim, 2009: Principles and applications of multi-level $H_2O$/$CO_2$ profile measurement system. Korean Journal of Agricultural and Forest Meteorology 11, 27-38. https://doi.org/10.5532/KJAFM.2009.11.1.027
  40. Yuan, R., M.-S. Kang, S.-B. Park, J.-K. Hong, D.-H. Lee, and J. Kim, 2007: The effect of coordinate rotation on the eddy covariance flux estimation in a hilly KoFlux forest catchment. Korean Journal of Agricultural and Forest Meteorology 9, 100-108. https://doi.org/10.5532/KJAFM.2007.9.2.100