DOI QR코드

DOI QR Code

Production of Farm-level Agro-information for Adaptation to Climate Change

기후변화 대응을 위한 농장수준 농업정보 생산

  • Moon, Kyung Hwan (National Institute of Horticultural and Herbal Science) ;
  • Seo, Hyeong Ho (National Institute of Horticultural and Herbal Science) ;
  • Shin, Min Ji (National Institute of Horticultural and Herbal Science) ;
  • Song, Eung Young (National Institute of Horticultural and Herbal Science) ;
  • Oh, Soonja (National Institute of Horticultural and Herbal Science)
  • 문경환 (국립원예특작과학원 농촌진흥청) ;
  • 서형호 (국립원예특작과학원 농촌진흥청) ;
  • 신민지 (국립원예특작과학원 농촌진흥청) ;
  • 송은영 (국립원예특작과학원 농촌진흥청) ;
  • 오순자 (국립원예특작과학원 농촌진흥청)
  • Received : 2019.09.16
  • Accepted : 2019.09.25
  • Published : 2019.09.30

Abstract

Implementing proper land management techniques, such as selecting the best crops and applying the best cultivation techniques at the farm level, is an effective way for farmers to adapt to climate change. Also it will be helpful if the farmer can get the information of agro-weather and the growth status of cultivating crops in real time and the simulated results of applying optional technologies. To test this, a system (web site) was developed to produce agro-weather data and crop growth information of farms by combining agricultural climate maps and crop growth modeling techniques to highland area for summer-season Chinese cabbage production. The system has been shown to be a viable tool for producing farm-level information and providing it directly to farmers. Further improvements will be required in the speed of information access, the microclimate models for some meteorological factors, and the crop growth models to test different options.

농민이 농장에서 적지적작 기술을 구현하는 것은 기후변화에 적응하기 위한 효과적인 방법이 된다. 농민이 농장 수준에서부터 최적의 작물을 선택하고 최적의 재배기술을 구사하는데 농장의 기상과 작물의 생육상태를 실시간으로 파악하고 다양한 기술의 적용 결과를 사전에 모의해 볼 수 있다면 큰 도움이 될 것이다. 이를 시험하기 위하여 고랭지배추 주산지역을 대상으로 농업용 전자기후도와 작물 생육모형 기술을 결합하여 농장의 상세 기상과 작물 생육정보를 생산하는 시스템을 개발하였다. 이 시스템은 농장 수준의 농업 실황정보를 생산하여 농민에게 직접 제공할 수 있는 유력한 도구로 활용될 수 있다는 결과를 얻었다. 이러한 방식으로 농민이 직접 이용할 수 있도록 하기 위해서는 앞으로도 정보 생산 속도의 개선, 일부 기상요소에 대한 소기후 모형의 개발 및 여러 옵션을 시험해 볼 수 있도록 작물 생육모형을 개선하는 것 등이 필요하였다.

Keywords

References

  1. Ban, H. Y., D. H. Choi, J. B. Ahn, and B. U. Lee, 2017: Predicting regional soybean yield using crop growth simulation model. Korean Journal of Remote Sensing 33, 699-708. (in Korean with English abstract) https://doi.org/10.7780/kjrs.2017.33.5.2.9
  2. Bouman, B., H. Van Keulen, H. Van Laar, and R. Rabbinge, 1996: The 'School of de Wit'crop growth simulation models: a pedigree and historical overview. Agricultural Systems 52, 171-198. https://doi.org/10.1016/0308-521X(96)00011-X
  3. Farquhar, G. v., S. v. von Caemmerer, and J. Berry, 1980: A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149, 78-90. https://doi.org/10.1007/BF00386231
  4. Hsiao, J., K. Yun, K. H. Moon, and S. H. Kim, 2019: A process-based model for leaf development and growth in hardneck garlic (Allium sativum). Annals of Botany. https://doi.org/10.1093/aob/mcz060
  5. Jones, J. W., and Coauthors, 2003: The DSSAT cropping system model. European Journal of Agronomy 18, 235-265. https://doi.org/10.1016/S1161-0301(02)00107-7
  6. Kambezidis, H. D., and B. E. Psiloglou, 2008: The meteorological radiation model (MRM): advancements and applications. Modeling Solar Radiation at the Earth's Surface, Springer, Berlin, Heidelberg, 357-392.
  7. Kim, C. K., 2010: Impact analysis and adatation strategy in agricultural sector against climate change. Proceedings of the Korean Society of Environmetal Agriculture Workshop, 4-29. (in Korean)
  8. Kim, K. S., S O Kim, J. H. Kim, K. H. Moon, J. H. Shin, and J. Cho, 2018: Development and application of crop models in Korea. Korean Journal of Agricultural and Forest Meteorology 20, 145-148. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2018.20.2.145
  9. Kim, S. O., and J. I. Yun, 2014: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: III. Correction for advection effect on determination of daily maximum temperature over sloped surfaces. Korean Journal of Agricultural and Forest Meteorology 16, 297-303. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.4.297
  10. Kim, S. O., and J. I. Yun, 2015: Improving the usage of the Korea Meteorological Administration's digital forecasts in agriculture: IV. Estimation of daily sunshine duration and solar radiation based on 'Sky Condition' product. Korean Journal of Agricultural and Forest Meteorology 17, 281-289. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2015.17.4.281
  11. Kim, S. O., and J. I. Yun, 2016: Improving the usage of the Korea Meteorological Administration's digital forecasts in agriculture: V. Field validation of the Sky-condition based lapse rate estimation scheme. Korean Journal of Agricultural and Forest Meteorology 18, 135-142. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2016.18.3.135
  12. Kim, S. O., D. J. Kim, J. H. Kim, and J. I. Yun, 2013: Improving usage of the Korea Meteorological Administration's digital forecasts in agriculture: I. Correction for local temperature under the inversion condition. Korean Journal of Agricultural and Forest Meteorology 15, 76-84. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.2.076
  13. Kim, S., and S. H. Lee, 2011: The impact of climate changes on highland agriculture region in Taeback mountainous. Climate research 6, 100-109. (in Korean with English abstract)
  14. Kim, S. H., J. H. Jeong, and L. L. Nackley, 2013: Photosynthetic and transpiration responses to light, CO2, temperature, and leaf senescence in garlic: Analysis and modeling. Journal of the American Society for Horticultural Science 138, 149-156. https://doi.org/10.21273/JASHS.138.2.149
  15. Kim, S. H., and J. H. Lieth, 2003: A coupled model of photosynthesis, stomatal conductance and transpiration for a rose leaf (Rosa hybrida L.). Annals of botany 91, 771-781. https://doi.org/10.1093/aob/mcg080
  16. KMA (Korea Meteorological Administration), 2011: Report of Climate Change Scenario. 79-111. (in Korean)
  17. Lee, B. U., 1997: Transpiration modelling and verification in greenhouse tomato. Protected Horticulture and Plant Factory 6, 205-215. (in Korean with English abstract)
  18. Lee, C. K., J.-H. Kim, J.-Y. Son, Y.-H. Yoon, J.-H. Seo, Y.-U. Kwon, J.-C. Shin, and B.-W. Lee, 2010: Estimating grain weight and grain nitrogen content with temperature, solar radiation and growth traits during grain-filling period in rice. Journal of Crop Science and Biotechnology 55, 275-283. (in Korean with English abstract)
  19. Lee, C. K., B. U. Lee, J. C. Shin, and Y. H. Yun, 2001: Heading date and final leaf number as affected by sowing date and prediction of heading date based on leaf appearance model in rice. Journal of Crop Science and Biotechnology 46, 195-201. (in Korean with English abstract)
  20. Moon, K. H., E. Y. Song, I. C. Sonn, S. H. Wi, and H. N. Hyun, 2017: Estimation of Markov chain and gamma distribution parameters for generation of daily precipitation data from monthly data. Korean Journal of Agricultural and Forest Meteorology 19, 27-35. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2017.19.1.27
  21. Moon, K. H., E. Y. Song, S. H. Wi, and S. Oh, 2018a: Development of a Chinese cabbage model using Microsoft Excel/VBA. Korean Journal of Agricultural and Forest Meteorology 20, 228-232. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2018.20.2.228
  22. Moon, K. H., E. Y. Song, S. H. Wi, H. H. Seo, and H. N. Hyun, 2018b: Generation of daily temperature data using monthly mean temperature and precipitation data. Korean Journal of Agricultural and Forest Meteorology 20, 252-261. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2018.20.3.252
  23. Moon, K. H., K. S. Choi, I. C. Sonn, E. Y. Song, and S. Oh, 2014: A simple emergence model of southern type garlic based on temperature. Korean Journal of Agricultural and Forest Meteorology 16, 343-348. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2014.16.4.343
  24. Nelson, G. C., and G. E. Shively, 2014: Modeling climate change and agriculture: an introduction to the special issue. Agricultural Economics 45, 1-2. https://doi.org/10.1111/agec.12093
  25. Richardson, C., 1985: Weather simulation for crop management models. Transactions of the ASAE 28, 1602-1606. https://doi.org/10.13031/2013.32484
  26. Rosenzweig, C., J. W. Jones, J. L. Hatfield, A. C. Ruane, K. J. Boote, P. Thorburn, J. M. Antle, G. C. Nelson, C. Porter, S. Janssen, S. Asseng, B. Basso, F. Ewert, D. Wallach, G. Baigorria, and J. M. Winter, 2013: The agricultural model intercomparison and improvement project (AgMIP): protocols and pilot studies. Agricultural and Forest Meteorology 170, 166-182. https://doi.org/10.1016/j.agrformet.2012.09.011
  27. Rosenzweig, C., J. Elliott, D. Deryng, A. C. Ruane, C. Muller, A. Arneth, K. J. Boote, C. Folberth, M. Glotter, N. Khabarov, K. Neumann, F. Piontek, T. A. M. Pugh, E. Schimid, E. Stehfest, H. Yang and J. W. Jones, 2014: Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 111, 3268-3273. https://doi.org/10.1073/pnas.1222463110
  28. Seo, B. S., and B. U. Lee, 2018: Prototype development of phenology module of paprika process model for implement of functionalstructural model. Proceedings of the Korean Society of Crop Science Conference, 143-143. (in Korean)
  29. Shim, K.-M., K. A. Roh, K. H. So, K. Y. Kim, H. C. Jeong, and D. B. Lee, 2010: Assessing impacts of global warming on rice growth and production in Korea. Journal of Climate Change Research 1, 121-131. (in Korean with English abstract)
  30. Soltani, A., and G. Hoogenboom, 2007: Assessing crop management options with crop simulation models based on generated weather data. Field Crops Research 103, 198-207. https://doi.org/10.1016/j.fcr.2007.06.003
  31. Stockle, C., R. Nelson, M. Donatelli, and F. Castellvì, 2001: ClimGen: a flexible weather generation program. 2nd International Symposium Modelling Cropping Systems. Florence, Italy, 16-18.
  32. Teh, C. B., 2006: Introduction to mathematical modeling of crop growth: How the equations are derived and assembled into a c omputer model.
  33. Wilks, D. S., 1992: Adapting stochastic weather generation algorithms for climate change studies. Climatic change 22, 67-84. https://doi.org/10.1007/BF00143344
  34. Yin, X., and P. Struik, 2009: C3 and C4 photosynthesis models: an overview from the perspective of crop modelling. NJAS-Wageningen Journal of Life Sciences 57, 27-38. https://doi.org/10.1016/j.njas.2009.07.001
  35. Yin, X., M. Van Oijen, and A. H. Schapendonk, 2004: Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant, Cell & Environment 27, 1211-1222. https://doi.org/10.1111/j.1365-3040.2004.01224.x
  36. Yun, J. I., 2007: Applications of "high definition digital climate maps" in restructuring of Korean agriculture. Korean Journal of Agricultural and Forest Meteorology 9, 1-16. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2007.9.1.001
  37. Yun, J. I., 2010: Agroclimatic maps augmented by a GIS technology. Korean Journal of Agricultural and Forest Meteorology 12, 63-73. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2010.12.1.063
  38. Yun, J. I., S. O. Kim, J. H. Kim, and D. J. Kim, 2013: User-specific agrometeorological service to local farming community: A case study. Korean Journal of Agricultural and Forest Meteorology 15, 320-331. (in Korean with English abstract) https://doi.org/10.5532/KJAFM.2013.15.4.320