DOI QR코드

DOI QR Code

Photosynthesis and Chlorophyll Fluorescence of Evergreen Hardwoods by Drying Stress

건조 스트레스가 난대 상록활엽수의 광합성 반응 및 엽록소 형광반응에 미치는 영향

  • Jin, Eon-Ju (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Yoon, Jun-Hyuk (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Bae, Eun-Ji (Forest Biomaterials Research Center, National Institute of Forest Science) ;
  • Choi, Myung-Seok (Division of Environmental Forest Science, Gyeongsang National University)
  • 진언주 (국립산림과학원 산림바이오소재 연구소) ;
  • 윤준혁 (국립산림과학원 산림바이오소재 연구소) ;
  • 배은지 (국립산림과학원 산림바이오소재 연구소) ;
  • 최명석 (국립경상대학교 환경산림과학부)
  • Received : 2018.11.15
  • Accepted : 2019.09.19
  • Published : 2019.09.30

Abstract

This study was carried out to investigate the effects of C. japonica, D. morbifera, D. macropodum, I. anisatum, Q. glauca and R. indica To investigate the photosynthetic ability, chlorophyll content, chlorophyll fluorescence analysis, and physiological environmental. The photosynthetic rate, cancer respiration rate, stomatal conductance, and rate of evaporation tended to decrease as a result of drying stress in the no-water condition for 28 days. I. anisatum, Q. glauca and R. indica showed a low rate of less than 40% until 28 days of no-treatment. The total chlorophyll contents were decreased in the order of D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum. Chlorophyll fluorescence analysis showed that there was no change in the qP, but after 28 days no $Fv/F_m$, $F_o$, $R_{fd}$, $NPQ_{_-LSS}$ can be a useful indicator for quantitative estimation within a short period of time with a marked reduction rate of PSII quantum yield ${\Phi}PSII$ in the rectified state by continuous light during the nominal adaptation period. In the case of I. anisatum, Q. glauca and R. indica If water management can be carried out at intervals, it may be possible to plant trees in trees and landscape trees.

본 연구는 현재 국내에서 조경소재로 이용하고 있는 목본식물 중 동백나무(C. japonica), 황칠나무 (D. morbifera), 굴거리나무(D. macropodum), 붓순나무(I. anisatum), 후박나무(M. thunbergii), 종가시나무(Q. glauca), 다정큼나무(R. indica) 등 7수종에 대해서 건조 스트레스에 따른 광합성 능력, 엽록소 함량, 엽록소 형광분석에 미치는 영향 및 생리적 환경지표를 알아보고자 수행하였다. 28일 동안 무관수 상태에서 건조 스트레스를 유발한 결과 광합성 속도, 암호흡 속도, 기공전도도, 증산속도는 전반적으로 감소하는 경향을 보였으나 I. anisatum, Q. glauca 및 R. indica의 경우 무관 수 처리 28일까지 40% 이하의 낮은 감소율을 보였다(p<0.05). 총 엽록소 함량의 경우 D. macropodum> D. morbifera> C. japonica> Q. glauca> M. thunbergii> R. indica> I. anisatum 순으로 무관수 기간이 길어질수록 유의적으로 감소하는 경향으로 나타났다. 엽록소 형광을 분석한 결과 광화학적 소멸(qP)는 변동이 없는 반면, 무관수 28일 이후 광계II 활성(Fv/Fm), 암적응 형광값(Fo), 형광감소량($R_{fd}$), 정류상태 광화학적 소광($NPQ_{_-LSS}$), 명적응 기간 동안 연속광에 의한 정류상태 PSII양자 수득율 ${\Phi}PSII$에서 뚜렷한 감소율로 짧은 시간 내에 정략적으로 파악하는데 있어 유용한 지표가 될 수 있을 것으로 판단된다. 따라서 내건성이 높게 나타난 I. anisatum, Q. glauca, R. indica의 경우 최대 20일 간격으로 물관리를 할 수 있다면 가로수 및 조경수에 식재하여도 무방할 것으로 판단된다.

Keywords

References

  1. An, D. H., Y. T. Kim, D. J. Kim, and J. S. Lee, 2008: The effects of water stress on C3 plant and CAM plant. Korean Society of Environmental Biology 26, 271-278.
  2. Arnon, D. I., 1945: Copper enzymes in isolated chloroplasts polyphenoloxidase in Beta Vulgaris. Plant Physiology 24(1), 1-15. https://doi.org/10.1104/pp.24.1.1
  3. Barbagallo, R. P., K. Oxborough, K. E. Pallett, and N. R. Baker. 2003: Rapid, non-invasive screening for pertubations of metabolism and plant growth using chlorophyll fluorescence imaging. Plant Physiol 132, 485-493. https://doi.org/10.1104/pp.102.018093
  4. Bilger, W., and O. Bjorkman, 1990: Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25, 173-185. https://doi.org/10.1007/BF00033159
  5. Bolhar-Nordenkampf, H. R., and Oquist, G., 1993: Chlorophyll fluorescence as a tool in photosynthesis research. In Photosynthesis and Production in a Changing Environment, in: Hall, D. O., Scurlock, J. M. O., Bolhar -Nordenkampf, H. R., Leegood, R. C., Long, S. P.,(eds.), A Field and Laboratory Manual, Chapman and Hall, London, 193-206.
  6. Bousselot, J. M., J. E. Klett, and R. D. Koski, 2011: Moisture content of extensive green root substrate and growth response of 15 temperate plant species during dry down. HortScience 46, 518-522. https://doi.org/10.21273/HORTSCI.46.3.518
  7. Calatayud, A., D. Roca, and P.F. Martinez. 2006: Spatialtemporal variations in rose leaves under water stress conditions studied by chlorophyll fluorescence imaging. Plant Physiology and Biochemistry 44(10), 564-573. https://doi.org/10.1016/j.plaphy.2006.09.015
  8. Cooper, C. S., and M. Qualls, 1967: Morphology and chlorophyll content of shade and sun leaves of two legumes. Crop Science 7, 672-673. https://doi.org/10.2135/cropsci1967.0011183X000700060036x
  9. Cornic, G., 2000: Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends in Plant Science 5, 1360-1385. https://doi.org/10.1016/S1360-1385(00)01625-3
  10. Egert, M., and M. Tevini, 2002: Influence of drought on some physiological parameters symptomatic for oxidative stress in leaves of chives(Allium schoenoprasum). Environmental and Experimental Botany 48(1), 43-49. https://doi.org/10.1016/S0098-8472(02)00008-4
  11. Falqueto, A. R., F. S. Silva, D. Cassol, A. M. Magalhaes Júnior, A. C. Oliveir, and M. A. Bacarin, 2010: Chlorophyll fluorescence in rice: probing of senescence driven changes of PSII activity on rice varieties differing in grain yield capacity. Brazilian Journal of Plant Physiology 22, 35-41. https://doi.org/10.1590/S1677-04202010000100004
  12. Genty, B., J. Harbinson, and N. R. Baker, 1990: Relative quantum efficiencies of the two photosystems of leaves in photorespiratory and non-photorespiratory conditions. Plant Physiology and Biochemistry (Paris) 28(1), 1-10.
  13. Genty, B., J. M. Briantais, and N. R. Baker, 1989: The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990, 87-92. https://doi.org/10.1016/S0304-4165(89)80016-9
  14. Gimenez, C., V. J. Mitchell, and D. W. Lawlor, 1992: Regulation of photosynthetic rate of two sunflower hybrids under water stress. Plant Physiology 98, 516-524. https://doi.org/10.1104/pp.98.2.516
  15. Grobe, E., and A. Calatayud, 2012: Applications of chlorophy II fluorescence imaging techniqure in horticultural research: A review. Scientia Horticulturea 138, 24-35. https://doi.org/10.1016/j.scienta.2012.02.002
  16. Han, S. H., D. H. Kim, K. Y. Lee, J. J. Ku, and P. G. Kim, 2007: Physiological damages and biochemical alleviation to ozone toxicity in five species of genus Acer. Journal of Korean Forest Society 96, 551-560.
  17. Hiscox, J. D., and G. F. Israelstam, 1979: A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany 57, 1322-1334.
  18. Horton, P., A. V. Ruban, A. J. Young, 1999: Regulation of the structure and function of the light harvesting complexes of photosytem II by the xanthophyll cycle. In the photochemistry of carotenoids, in: Frank, H. A., Young, A. J., Cogdell, R. J., (eds.), Kluwer, Dordrecht, 271-291.
  19. Iglesias, J. D., A. Calatayud, E. Barreno, E. Primo-Millo, and M. Talon, 2006: Responses of citurs plants to ozone: Leaf biochemistry, antioxidant mechanisms and lipid peroxidation. Plant Physiology and Biochemistry 44, 125-131. https://doi.org/10.1016/j.plaphy.2006.03.007
  20. Kim, H. R., and Y. H. You, 2010: Effects of elevated $CO_2$ concentration and increased temperature on leaf relatedphysiological responses of Phytolacca insularis (native species) and Phytolacca Americana (invasive species). Journal of Ecology and Field Biology 33, 195-204.
  21. Kim, S. C., and B. J. Park, 2013: Assessment of temperature reduction and heat budget of extensive modular green root system. Korean Journal Horticultural Science Technology 31(4), 503-511. https://doi.org/10.7235/hort.2013.13001
  22. Kim, G. N., S. H. Han, and G. S. Park, 2014: Differences on Growth, Photosynthesis and Pigment Contents of Open-pollinated Pinus densiflora Families Under Elevated Temperature and Drought. Korea Journal of Agricultural and Forest Meteorology 16, 285-296. https://doi.org/10.5532/KJAFM.2014.16.4.285
  23. Koch, G. W., S. C. Sillet, G. M. Jennings, and S. D. Davis, 2004: The limits to tree height. Nature 428, 851-854. https://doi.org/10.1038/nature02417
  24. KMA (Korea Meteorological Administration), 2017: Integrated Drought Information System. https://drought.kma.go.kr/(2017.07.11).
  25. Lichtenthaler, H. K., G. Langsdorf, S. Lenk, and C. Busch-mann, 2005: Chlorophyll fluorescence imaging of photosynthetic activity with the flash-lamp fluore -scence imaging system. Photosynthetica 43, 355-369. https://doi.org/10.1007/s11099-005-0060-8
  26. Lee, S. W., D. Y. Park, T. S. Kim, B. T. Yeon, C. G. Kim, and S. W. Cha, 2007: Effect of soil moisture content on photosynthesis and root yield of Panax ginseng C. A. Meyer seedling. Korean Journal of Medicinal Crop Science 15, 367-370.
  27. Lee, K. C., S. H. Kim, W. G. Park, and Y. S. Kim, 2014: Effect of Drought Stress on Photosynthetic Capacity and Photosystem II Activity in Oplopanax elatus. Korean Journal of Medicinal Crop Science 22(1), 38-45. https://doi.org/10.7783/KJMCS.2014.22.1.38
  28. Lee, K. C., and H. B. Lee, 2017: Drought stress influences photosynthesis and water relations parameters of Synurus deltoids. Journal of Korean Forest Society 3, 228-299.
  29. Lim, J. H., S. Y. Woo, M. J. Kwon, J. H. Chun, and J. H. Shin, 2006: Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. Journal or Korean Forestry Society 95, 705-710.
  30. Mackinney, G., 1941: Absorption of light by chlorophyll solution. Journal of Biological Chemistry 140(2), 315-322. https://doi.org/10.1016/S0021-9258(18)51320-X
  31. Medrano, H., M. A. J. Parry., X. Socias, and D. W. Lawlor, 1997: Long term water stress inactivates Rubisco in subterranean clover. Annals of Applied Biology 131(3), 491-501. https://doi.org/10.1111/j.1744-7348.1997.tb05176.x
  32. Million, J., T. Yeager., and C. Larsen, 2007: Water use and fertilizer response of azalea using several no-leach irrigation methods. HortTechnology 17, 21-25. https://doi.org/10.21273/HORTTECH.17.1.21
  33. Naumann, J. C., D. R. Young, and J. E. Anderson, 2007: Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiologia Plantarum 131, 422-433. https://doi.org/10.1111/j.1399-3054.2007.00973.x
  34. Oh, C. Y., S. H. Han, Y. Y. Kim, and J. C. Lee, 2005: Changes of drought tolerance and photosynthetic characteristics of Populus davidiana dode according to PEG concentration. Korean Journal of Agricultural and Forest Meteorology 7, 296-302.
  35. Park, Y. M., 2013: Characteristic of matter allocation of Calystegia soldanella under water stress. Journal of Environmental Science International 22(2), 187-193. https://doi.org/10.5322/JESI.2013.22.2.187
  36. Park, S. S., J. H. Choi, and B. J. Park, 2017: Physiological responses of green roof plants to drought stress. Journal of Korean institute of landscape architecture 45(2), 51-59. https://doi.org/10.9715/KILA.2017.45.2.051
  37. Price, A. H., J. E. Cairns, P. Horton, H. G. Jones, and H. Griffiths, 2002: Linking drought-resistance mechanisms to drought avoidance in upland rice using a QTL approach: Progress and new opportunities to integrate stomatal and mesophyll responses. Journal of Experimental Botany 53, 989-1004. https://doi.org/10.1093/jexbot/53.371.989
  38. Ricart, M., H. Guasch, D. Barcelo, R. Brix, M. H. Conceicao, A. Geiszinger, M. J. Lopez, J. C. Lopez-Doval, I. Munoz, C. Postigo, A. M. Romani, Villa de Alda grasa, M., S. Sabater, 2010: Primary and complex stressors in polluted Mediterranean rivers: pesticide effects on biological communities. Journal of Hydrology 383, 52-61. https://doi.org/10.1016/j.jhydrol.2009.08.014
  39. Richards, R. A., and A. G. Condon, 1993: Challenges ahead in using carbon isotope discrimination in plant-breeding programs. Academic Press, 451-462.
  40. Rustad, L. E., J. L. Campbell, G. M. Marion, R. J. Norby, M. J. Mitchell, A. E. Hartley, J. H. C. Cornelissen, and J. Gurevitch, 2001: A meta-analysis of the response of soil respiration, net nitrogen mineralization, and aboveground plant growth to experimental ecosystem warming. Oecologia 126, 543-562. https://doi.org/10.1007/s004420000544
  41. Rysgaard, S., M. Kuhl, R. N. Glud, and J. W. Hansen, 2001: Biomass, production and horizontal patchiness of sea ice algae in a high-Arctic fjord (Young Sound, NE Greenland). Marine Ecology Progress Series 223, 15-26. https://doi.org/10.3354/meps223015
  42. Schreiber, U., U. Schliwa, and W. Bilger, 1986: Continuous recording of photochemical and nonphotochemical chlorophyll fluorescence quenching with a new type of modulation fluorometer. Photosynthesis Research 10, 51-62. https://doi.org/10.1007/BF00024185
  43. Shearman, R. C., and J. B. Beard, 1972: Stomatal density and distribution in Agrostis as influenced by species, cultivar, and leaf blade surface and position. Crop Science 12(6), 822-823. https://doi.org/10.2135/cropsci1972.0011183X001200060031x
  44. Stocker, T. F., D. Qin, G.-K. Plattner, L. V. Alexander, S. K. Allen, N. L. Bindoff, F.-M. Breon, J. A. Church, U. Cubasch, S. Emori, P. Forster, P. Friedlingstein, N. Gillett, J. M. Gregory, D. L. Hartmann, E. Jansen, B. Kirtman, R. Knutti, K. Krishna Kumar, P. Lemke, J. Marotzke, V. Masson-Delmotte, G. A. Meehl, I. I. Mokhov, S. Piao, V. Ramaswamy, D. Randall, M. Rhein, M. Rojas, C. Sabine, D. Shindell, L. D. Talley, D. G. Vaughan, and S.-P. Xie, 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change(Eds.). Cambridge University Press, 33-115.
  45. Strasser, R. J., A. Srivastava, and M. Tsimilli-Michael, 2000: The fluorescence transient as a tool to characterize and screen photosynthetic samples. Probing Photosynthesis: Mechanism, Regulation and Adaptation, In M. Yunus, U. Pathre, P. Mohanty (Eds.), Taylor and Francis, London, UK. 443-480.
  46. Taiz, L., and E. Zeiger, 2006: Plant Physiology(4th ed.). Sinauer Associates. Sunderland. Massachusetts, U.S.A., 672-705.
  47. VanWoert, N. D., D. B. Rowe, J. A. Andresen, C. l. Rugh, and L. Xiao, 2005: Watering regime and green roof substrate design affect Sedum plant growth. HortScience 40, 659-664. https://doi.org/10.21273/HORTSCI.40.3.659
  48. Wang, Z. X., L. Chen, J. A. i, H. Y. Qin, Y. X. Liu, P. L. Xu, Z. Q. Jiao, Y. Zhao, and Q. T. Zhang, 2012: Photosynthesis and Activity of Photosystem II in Response to Drought Stress in Amur Grape (Vitis Amurensis Rupr.). Photosynthetica 50, 189-196. https://doi.org/10.1007/s11099-012-0023-9
  49. Wn, Z., P. Dijkstra, G. W. Koch, J. Penuelas, and B. A. Hungate, 2011: Responses of terrestrial ecosystems to tempetature and precipitation change: a meta-analysis of treeline birch(Betula utilis) saplings, Eastern Tibetan Plateau, China. European Journal of Forest Research 13, 811-819.
  50. Yoo, S. Y., K. C. Eom, S. H. Park, and T. W. Kim, 2012: Possibility of Drought stress Indexing by Chlorophyll Fluorescence Imaging Technique in Red Pepper (Capsicum annuum L.). Korean Journal of Soil Science and Fertilizer 45(5), 676-682. https://doi.org/10.7745/KJSSF.2012.45.5.676
  51. Yu, S. O., and J. H. Bae, 2004: The effect of fertigation setting point on the growth and fruit quality of sweet pepper(Capsicum annuum L.). Journal of Bio-Environment Control 13, 102-106.