DOI QR코드

DOI QR Code

Characteristics of Biorefinery Process Using Laminaria japonica for the Production of Carbohydrate and Reducing Sugar

Laminaria japonica를 이용하여 탄수화물과 환원당 생산을 위한 바이오리파이너리 공정 특성

  • Kim, Ji Hyun (CK Translational Research Center, CK Biotech) ;
  • Ha, Jeong Hyub (Department of Integrated Environmental Systems, Pyeongtaek University) ;
  • Choi, Suk Soon (Department of Biological and Environmental Engineering, Semyung University) ;
  • Park, Jong Moon (Department of Chemical Engineering, Pohang University of Science and Technology)
  • 김지현 ((주)씨케이바이오텍) ;
  • 하정협 (평택대학교 환경융합시스템학과) ;
  • 최석순 (세명대학교 바이오환경공학과) ;
  • 박종문 (포스텍 화학공학과)
  • Received : 2019.08.27
  • Accepted : 2019.09.17
  • Published : 2019.10.10

Abstract

In this study, Laminaria japonica was used as a substrate for a mixed aerobic microbial consortium. Laminaria japonica is well-known as a representative brown algal biomass possessing advantages of cheap cost, and high productivity and carbohydrate content. A biological saccharification system was established by inoculating and enriching the mixed aerobic microbial consortium. Production of the soluble carbohydrate and reducing sugar at different hydraulic retention times (HRT) was observed. The efficiency of saccharification increased according to the decrease of HRT. The maximum saccharification yield in a continuous biological pretreatment process was 17.96 and 4.30 g/L/day for the soluble carbohydrate and reducing sugar, respectively at the HRT of 1 day. In contrast, the staccharification yield decreased drastically at the HRT of 0.5 day. Experimental results indicate that Laminaria japonica is a promising material for the production of useful products, in particular for the saccharification through a biorefinery process. It can thus be concluded that a continuous biological pretreatment process using a mixed cultivation system can be successfully employed for the biorefinery technology.

본 연구에서는 호기성 혼합 균주의 기질로서 Laminaria japonica를 사용하여 수용성 당과 환원당을 생산하였다. Laminaria japonica는 대표적인 갈조류 바이오매스로 높은 생장율, 저렴한 가격 및 탄수화물 함량이 높은 특성을 가지고 있다. 본 실험에 적용된 당화공정은 호기성 혼합 균주를 배양 및 순응시켜서 안정화하였다. 수용성 당과 환원당의 생산이 각기 다른 수리학적 체류시간에서 관찰되었으며, 당화 효율은 수리학적 체류시간을 낮출수록 증가하였다. 또한, 연속식 공정을 이용하여 1 day의 수리학적 체류시간 조건에서 최대 당화 효율을 나타내었으며, 17.96 g/L/day의 가용화된 탄수화물과 4.30 g/L/day의 환원당을 수득하였다. 그러나 수리학적 체류시간을 0.5 day로 낮추었을 때 당화수율이 급격히 감소하는 현상을 확인할 수 있었다. 실험결과를 통하여 Laminaria japonica가 바이오리파이너리 공정을 통하여 유용물질을 생산하기에 매우 적합한 바이오매스임이 확인되었다. 결론적으로 혼합균주를 이용한 연속 생물학적 전처리 시스템이 바이오리파이너리 기술에 성공적으로 사용될 수 있음을 확인하였다.

Keywords

References

  1. P. S. Nigam and A. Singh, Production of liquid biofuels from renewable resources, Prog. Energy Combust. Sci., 37, 52-68 (2011). https://doi.org/10.1016/j.pecs.2010.01.003
  2. B. Dien, M. Cotta, and T. Jeffries, Bacteria engineered for fuel ethanol production: Current status, Appl. Microbiol. Biotechnol., 63, 258-266 (2003). https://doi.org/10.1007/s00253-003-1444-y
  3. K. A. Jung, S.-R. Lim, Y. Kim, and J. M. Park, Potentials of macroalgae as feedstocks for biorefinery, Bioresour. Technol., 135, 182-190 (2013). https://doi.org/10.1016/j.biortech.2012.10.025
  4. A. Hendriks and G. Zeeman, Pretreatments to enhance the digestibility of lignocellulosic biomass, Bioresour. Technol., 100, 10-18 (2009). https://doi.org/10.1016/j.biortech.2008.05.027
  5. Y. Sun and J. Cheng, Hydrolysis of lignocellulosic materials for ethanol production: A review, Bioresour. Technol., 83, 1-11 (2002). https://doi.org/10.1016/S0960-8524(01)00212-7
  6. R. E. Sims, W. Mabee, J. N. Saddler, and M. Taylor, An overview of second generation biofuel technologies, Bioresour. Technol., 101, 1570-1580 (2010). https://doi.org/10.1016/j.biortech.2009.11.046
  7. P. Fasahati and J. J. Liu, Process simulation of bioethanol production from brown algae, Cellulose, 6, 6-13 (2012).
  8. H. R. Park, Production of Organic Acids from Seaweed Biomass (Laminaria japonica) using a Continuous Mixed Culture System, Graduate School of Pohang University of Science and Technology. MS Thesis, Pohang, Korea (2012).
  9. S. Fernando, S. Adhikari, C. Chandrapal, and N. Murali, Biorefineries: Current status, challenges, and future direction, Energy Fuel., 20, 1727-1737 (2006). https://doi.org/10.1021/ef060097w
  10. H. A. Kim, Enterobacter sp. JMP3, a Potent Bacterium for the Production of Value Added Products from Marine Algal Biomass, Laminaria japonica, Pohang University of Science and Technology. MS Thesis, Pohang, Korea (2011).
  11. J. Cronshaw, A. Myers, and R. Preston, A chemical and physical investigation of the cell walls of some marine algae, Biochim. Biophys. Acta, 27, 89-103 (1958). https://doi.org/10.1016/0006-3002(58)90295-6
  12. F. A. Keller, J. E. Hamilton, and Q. A. Nguyen, Microbial pretreatment of biomass. Appl. Biochem. Biotech., 105, 27-41 (2003). https://doi.org/10.1385/ABAB:105:1-3:27
  13. L. Ge, P. Wang, and H. Mou, Study on saccharification techniques of seaweed wastes for the transformation of ethanol, Renew. Energy, 36, 84-89 (2011). https://doi.org/10.1016/j.renene.2010.06.001
  14. APHA, Standard Methods for the Examination of Water and Wastewater, 20th ed., American Public Health Association (APHA), Washington DC, USA (1998).
  15. M. Dubois, K. A. Gilles, J. K. Hamilton, P. T. Rebers, and F. Smith, Colorimetric method for determination of sugars and related substances, Anal. Chem., 28, 350-356 (1956). https://doi.org/10.1021/ac60111a017
  16. R. Bottle and G. Gilbert, The use of alkaline reagents to determine carbohydrate reducing groups, Analyst, 83, 403-406 (1958). https://doi.org/10.1039/an9588300403
  17. R. P. John, G. Anisha, K. M. Nampoothiri, and A. Pandey, Micro and macroalgal biomass: A renewable source for bioethanol, Bioresour. Technol., 102, 186-193 (2011). https://doi.org/10.1016/j.biortech.2010.06.139
  18. M. Daroch, S. Geng, and G. Wang, Recent advances in liquid biofuel production from algal feedstocks, Appl. Energy, 102, 1371-1381 (2013). https://doi.org/10.1016/j.apenergy.2012.07.031
  19. H. M. Jang, J. H. Ha, J. M. Park, M. S. Kim, and S. G. Sommer, Comprehensive microbial analysis of combined mesophilic anaerobic-thermophilic aerobic process treating high-strength food wastewater, Water Res., 73, 291-303 (2015). https://doi.org/10.1016/j.watres.2015.01.038