DOI QR코드

DOI QR Code

Application of Steel-tubed Concrete Structures in High-rise Buildings

  • Zhou, Xuhong (School of Civil Engineering, Chongqing University) ;
  • Liu, Jiepeng (School of Civil Engineering, Chongqing University)
  • Published : 2019.09.01

Abstract

Making full use of material strength, maintaining sufficient ductility of structural components, and ensuring simple and robust connections are crucial to the development of steel-concrete composite structures. The steel-tubed concrete structure uses thin-walled steel tube to provide confinement, so that the strength and ductility of the concrete core are improved. Meanwhile, the thin-walled steel tube is terminated at the beam-column joint to avoid the local buckling problem and simplify the connections between steel tube and RC members. A brief overview of the development of steel-tubed concrete structures is presented. Through the discussion on the structural behavior of steel-tubed concrete and the introduction of typical practical projects, the prospects for future research are highlighted.

Keywords

References

  1. Aboutaha, R., Engelhardt, M., Jirsa, J., et al. (1996). Retrofit of concrete columns with inadequate lap splices by the use of rectangular steel jackets. Earthquake Spectra, 12(4), 693-714. https://doi.org/10.1193/1.1585906
  2. Aboutaha, R., and Machado, R. (1999). Seismic resistance of steel-tubed high-strength reinforced-concrete columns. Journal of Structural Engineering, 125(5), 485-494. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:5(485)
  3. Cheng, G., Zhou, X., Liu, J., and Chen, Y. (2019). Seismic behavior of circular tubed steel-reinforced concrete columnto steel beam connections. Thin-Walled Structures, 138, 485-495. https://doi.org/10.1016/j.tws.2018.10.041
  4. Fam, A., Qie, F., and Rizkalla, S. (2004). Concrete-filled steeltubes subjected to axial compression and lateral cyclic loads. Journal of Structural Engineering, 130(4), pp. 631-640. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:4(631)
  5. Fukuhara, and T., Sun, Y. (2008). "Earthquake-Resisting Properties of Confined High-Strength Concrete Frames." The 14th World Conference on Earthquake Engineering, Beijing, China.
  6. Gan, D., Guo, L., Liu, J., et al. (2011). Seismic behavior and moment strength of tubed steel reinforced-concrete (SRC)beam-columns. Journal of Constructional Steel Research, 67(10), 1516-1524. https://doi.org/10.1016/j.jcsr.2011.03.025
  7. Gardner, N., and Jacobson, E. (1967). Structural behavior of concrete filled steel tubes. Journal Proceedings, 64(7), 404-413.
  8. Guo, L., Liu, Y., Fu, F., and Huang, H. (2019). Behavior of axially loaded circular stainless steel tube confined concretestub columns. Thin-Walled Structures, 139, 66-76. https://doi.org/10.1016/j.tws.2019.02.014
  9. Han, L., Qu, H., Tao, Z., and Wang, Z. (2009). Experimental behaviour of thin-walled steel tube confined concrete column to RC beam joints under cyclic loading. Thin-WalledStructures, 47(8), 847–857.
  10. Han, L., Yao, G., Chen, Z., et al. (2005). Experimental behaviours of steel tube confined concrete (STCC) columns. Steel and Composite Structures, 5(6), 459-484. https://doi.org/10.12989/scs.2005.5.6.459
  11. Hoang, A., Fehling, E., Lai, B., Thai, D. K., and Chau, N. (2019). Experimental study on structural performance of UHPC and UHPFRC columns confined with steel tube. Engineering Structures, 187, 457-477. https://doi.org/10.1016/j.engstruct.2019.02.063
  12. Hoshikuma, J., and Priestley, M. J. N. (2000). "Flexural behavior of circular hollow columns with a single layer of reinforcement under seismic loading." Rep. No. SSRP-2000/13, Univ. of California, San Diego, La Jolla, CA.
  13. Johansson, M., and Gylltoft, K. (2002). Mechanical behavior of circular steel-concrete composite stub columns. Journalof Structural Engineering, 128(8), 1073-1081. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:8(1073)
  14. Lahlou, K., Lachemi, M., and Aïtcin, P. (1999). Confined high-strength concrete under dynamic compressive loading. Journal of Structural Engineering, 125(10), 1100-1108. https://doi.org/10.1061/(ASCE)0733-9445(1999)125:10(1100)
  15. Liu, J., Li, X., Zang, X., et al. (2018). Hysteretic behavior and modified design of square TSRC columns with shear studs. Thin-Walled Structures, 129, 265-277. https://doi.org/10.1016/j.tws.2018.04.007
  16. Liu, J., Wang, X., Qi, H., et al. (2015). Behavior and Strengthof Circular Tubed Steel-Reinforced-Concrete Short Columns under Eccentric Loading. Advances in StructuralEngineering, 18(10), 1587-1595. https://doi.org/10.1260/1369-4332.18.10.1587
  17. Lubiewski, M., Silva, P., and Chen, G. (2006). Retrofit of column-bent cap connections of Alaska bridges for seismicloadings: damage evaluation. Structures Congress 2006: Structural Engineering and Public Safety, pp. 1-13.
  18. Orito, Y., Sato, T., Tanaka, N., et al. (1987). Study on the unbonded steel tube concrete structure. Composite Construction in Steel and Concrete, 786-804.
  19. O'Shea, M., and Bridge, R. (2000) Design of circular thin-walled concrete filled steel tubes. Journal of Structural Engineering, 126(11), 1295-1303. https://doi.org/10.1061/(ASCE)0733-9445(2000)126:11(1295)
  20. Peter, M., John, F., and Mohamed, L. (2004). Composite response of high-strength concrete confined by circular steel tube. Structural Journal, 101(4), 466-474.
  21. Prion, H., and Boehme, J. (1994). Beam-column behaviour of steel tubes filled with high strength concrete. Canadian Journal of Civil Engineering, 21(2), 207-218. https://doi.org/10.1139/l94-024
  22. Priestley, M., and Park, R. (1985). "Concrete filled steel tubular piles under seismic loading." Proc. International Speciality Conference on Concrete Filled Steel Tubular Structures, Harbin, China, pp. 96-103.
  23. Priestley, M., Seible, F., Xiao, Y., et al. (1994a). Steel jacket retrofitting of reinforced concrete bridge columns for enhanced strength-part 1: Theoretical considerations and test design. ACI Structural Journal, 91(4), 394-405.
  24. Priestley, M., Seible, F., and Xiao, Y. (1994b). Steel jacket retrofitting of reinforced concrete bridge columns for enhanced shear strength-Part 2: Test results and comparisonwith theory. ACI Structural Journal, 91(5), 537-551.
  25. Qi, H., Guo, L., Liu, J., et al (2011). Axial load behavior and strength of tubed steel reinforced-concrete (SRC) stub columns. Thin-Walled Structures, 49(9), 1141-1150. https://doi.org/10.1016/j.tws.2011.04.006
  26. Sun, Y., Matsuo, H., and Fukuhara, T. (2004). "Cyclic responseof highly confined HSC columns." 13th World Conferenceon Earthquake Engineering Vancouver, BC, Canada, (3221).
  27. Sun, Y., and Sakino, K. (1997). Earthquake-resisting per-formance of R/C columns confined by square steel tubes-Part 1: columns under high axial load. Journal of Structuraland Construction Engineering AIJ, 501(11), 93-101.
  28. Tomii, M., Sakino, K., Watanabe, K., et al. (1985). "Lateral loadcapacity of reinforced concrete short columns confined by steel tube." Proc. International Speciality Conference on Concrete Filled Steel Tubular Structures, Harbin, China, pp. 19-26.
  29. Wang, X., Liu, J., and Zhang, S. (2015). Behavior of short circular tubed-reinforced-concrete columns subjected to eccentric compression. Engineering Structures, 105, 77-86. https://doi.org/10.1016/j.engstruct.2015.10.001
  30. Wang, X., Liu, J., and Zhou, X. (2016). Behaviour and design method of short square tubed-steel-reinforced-concrete columns under eccentric loading. Journal of Constructional Steel Research, 116, 193-203. https://doi.org/10.1016/j.jcsr.2015.09.018
  31. Xiao, Y., and Wu, H. (2003). Retrofit of reinforced concrete columns using partially stiffened steel jackets. Journal of Structural Engineering, 129(6), 725-732. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:6(725)
  32. Xiong, M., Xiong, D., and Liew, J. (2017). Axial performanceof short concrete filled steel tubes with high-and ultra-high-strength materials. Engineering Structures, 136, 494-510. https://doi.org/10.1016/j.engstruct.2017.01.037
  33. Hua, Y., Liu, F., and Gardner, L. (2015). Post-fire behaviour of slender reinforced concrete columns confined by circularsteel tubes. Thin-Walled Structures, 87, 12-29. https://doi.org/10.1016/j.tws.2014.10.014
  34. Zhang, S., and Liu, J. (2008). Seismic behavior and strength of square tube confined reinforced-concrete (STRC) columns. Steel Construction, 63(9), 1194-1207. https://doi.org/10.1016/j.jcsr.2006.11.017
  35. Zhou, X., Cheng, G., Liu, J., et al. (2017). Behavior of circulartubed-RC column to RC beam connections under axial compression. Journal of Constructional Steel Research, 130, 96-108. https://doi.org/10.1016/j.jcsr.2016.12.005
  36. Zhou, X., Cheng, G., Liu, J., Yang, Y., and Chen, Y. (2019). Shear transfer behavior at the circular tubed column-steel beam interface.Thin-Walled Structures, 137, 40-52. https://doi.org/10.1016/j.tws.2018.12.031
  37. Zhou, X., and Liu, J. (2010a). Seismic behavior and shear strength of tubed RC short columns. Journal of Constructional Steel Research, 66(3), 385-397. https://doi.org/10.1016/j.jcsr.2009.10.011
  38. Zhou, X., and Liu, J. (2010b). Seismic behavior and strength of tubed steel reinforced concrete (SRC) short columns. Journal of Constructional Steel Research, 66(7), 885-896. https://doi.org/10.1016/j.jcsr.2010.01.020
  39. Zhou, X., Liu, J., Wang, X., et al. (2016). Behavior and design of slender circular tubed-reinforced-concrete columns subjected to eccentric compression. Engineering Structures, 124, 17-28. https://doi.org/10.1016/j.engstruct.2016.05.036
  40. Zhou, X., Yan, B., and Liu, J. (2015). Behavior of square tubed steel reinforced-concrete (SRC) columns under eccentric compression. Thin-Walled Structures, 91, 129-138. https://doi.org/10.1016/j.tws.2015.01.022
  41. Zhou, X., Zang, X., Wang, X., et al. (2017). Seismic behaviorof circular TSRC columns with studs on the steel section. Journal of Constructional Steel Research, 137, 31-36.d https://doi.org/10.1016/j.jcsr.2017.04.023
  42. Zhou, X., Zhang, X., and Liu, J. (2009). Seismic behavior of steel-tube reinforced-concrete (STRC) and steel reinforced-concrete (SRC) columns. Journal of Building Structures, 30, 121-128.