DOI QR코드

DOI QR Code

Assessment of porosity influence on dynamic characteristics of smart heterogeneous magneto-electro-elastic plates

  • Ebrahimi, Farzad (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Jafari, Ali (Department of Mechanical Engineering, Faculty of Engineering, Imam Khomeini International University) ;
  • Mahesh, Vinyas (Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology)
  • Received : 2018.05.25
  • Accepted : 2019.05.14
  • Published : 2019.10.10

Abstract

A four-variable shear deformation refined plate theory has been proposed for dynamic characteristics of smart plates made of porous magneto-electro-elastic functionally graded (MEE-FG) materials with various boundary conditions by using an analytical method. Magneto-electro-elastic properties of FGM plate are supposed to vary through the thickness direction and are estimated through the modified power-law rule in which the porosities with even and uneven type are approximated. Pores possibly occur inside functionally graded materials (FGMs) due the result of technical problems that lead to creation of micro-voids in these materials. The variation of pores along the thickness direction influences the mechanical properties. The governing differential equations and boundary conditions of embedded porous FGM plate under magneto-electrical field are derived through Hamilton's principle based on a four-variable tangential-exponential refined theory which avoids the use of shear correction factors. An analytical solution procedure is used to achieve the natural frequencies of embedded porous FG plate supposed to magneto-electrical field with various boundary condition. A parametric study is led to carry out the effects of material graduation exponent, coefficient of porosity, magnetic potential, electric voltage, elastic foundation parameters, various boundary conditions and plate side-to-thickness ratio on natural frequencies of the porous MEE-FG plate. It is concluded that these parameters play significant roles on the dynamic behavior of porous MEE-FG plates. Presented numerical results can serve as benchmarks for future analyses of MEE-FG plates with porosity phases.

Keywords

References

  1. Akgoz, B. and O. Civalek (2011), "Nonlinear vibration analysis of laminated plates resting on nonlinear two-parameters elastic foundations", Steel Compos. Struct., 11(5), 403-421. https://doi.org/10.12989/scs.2011.11.5.403.
  2. Arrigan, J., Huang, C., Staino, A., Basu, B., and Nagarajaiah, S. (2014), "A frequency tracking semi-active algorithm for control of edgewise vibrations in wind turbine blades", Smart Struct. Syst., 13(2), 177-201. https://doi.org/10.12989/sss.2014.13.2.177.
  3. Annigeri, A.R., N. Ganesan, and S. Swarnamani (2007), "Free vibration behaviour of multiphase and layered magneto-electroelastic beam", J. Sound Vib., 299(1), 44-63. https://doi.org/10.1016/j.jsv.2006.06.044.
  4. Atmane, H.A., A. Tounsi, and F. Bernard (2015), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", J. Mech. Mater. Design, 1-14. https://doi.org/10.1007/s10999-015-9318-x.
  5. Beldjelili, Y., Tounsi, A., and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst.., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755.
  6. Boutahar, L. and R. Benamar (2016), "A homogenization procedure for geometrically non-linear free vibration analysis of functionally graded annular plates with porosities, resting on elastic foundations", Ain Shams Eng. J., 7(1), 313-333. https://doi.org/10.1016/j.asej.2015.11.016.
  7. Bouafia, K., Kaci, A., Houari, M. S. A., Benzair, A., and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst.., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115.
  8. Bjurström, H., Ryden, N., and Birgisson, B. (2016), "Non-contact surface wave testing of pavements: comparing a rolling microphone array with accelerometer measurements", Smart Struct. Syst., 17(1), 1-15. https://doi.org/10.12989/sss.2016.17.1.001.
  9. Benveniste, Y. (1995), "Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases", Physical Review B, 51(22). https://doi.org/10.1103/PhysRevB.51.16424.
  10. Chikh, A., Tounsi, A., Hebali, H. and Ma hmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289.
  11. Chen, W., K.Y. Lee, and H. Ding (2005), "On free vibration of non-homogeneous transversely isotropic magneto-electroelastic plates", J. Sound Vib., 279(1), 237-251. https://doi.org/10.1016/j.jsv.2003.10.033.
  12. Civalek, O. (2007), "Nonlinear analysis of thin rectangular plates on Winkler-Pasternak elastic foundations by DSC-HDQ methods", Appl. Math. Modell., 31(3), 606-624. https://doi.org/10.1016/j.apm.2005.11.023.
  13. Civalek, Ö. (2006), "Harmonic differential quadrature-finite differences coupled approaches for geometrically nonlinear static and dynamic analysis of rectangular plates on elastic foundation", J. Sound Vib., 294(4), 966-980. https://doi.org/10.1016/j.jsv.2005.12.041.
  14. Daga, A., N. Ganesan, and K. Shankar (2009), "Transient dynamic response of cantilever magneto-electro-elastic beam using finite elements", J. Comput. Method. Eng. Sci. Mech., 10(3), 173-185. https://doi.org/10.1080/15502280902797207.
  15. Ebrahimi, F. and M. Mokhtari (2014), "Transverse vibration analysis of rotating porous beam with functionally graded microstructure using the differential transform method", J. Brazil. Soc. Mech. Sci. Eng., 1-10. https://doi.org/10.1007/s40430-014-0255-7.
  16. Ebrahimi, F. and M. Zia (2015), "Large amplitude nonlinear vibration analysis of functionally graded Timoshenko beams with porosities", Acta Astronautica, 116, 117-125. https://doi.org/10.1016/j.actaastro.2015.06.014.
  17. Ebrahimi, F., F. Ghasemi, and E. Salari (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249. https://doi.org/10.1007/s11012-015-0208-y.
  18. Glaser, S.D., Shoureshi, R.A. and Pescovitz, D. (2005), "Frontiers in sensors and sensing systems", Smart Struct. Syst., 1(1), 103-120. https://doi.org/10.12989/sss.2005.1.1.103
  19. Huang, D., H. Ding, and W. Chen (2007), "Analytical solution for functionally graded magneto-electro-elastic plane beams", J. Eng. Sci., 45(2), 467-485. https://doi.org/10.1016/j.ijengsci.2007.03.005.
  20. Huang, Z., C. Lü, and W. Chen (2008), "Benchmark solutions for functionally graded thick plates resting on Winkler-Pasternak elastic foundations", Compos. Struct., 85(2), 95-104. https://doi.org/10.1016/j.compstruct.2007.10.010.
  21. Hashemi, S.H., H.R.D. Taher and M. Omidi (2008), "3-D free vibration analysis of annular plates on Pasternak elastic foundation via p-Ritz method", J. Sound Vib., 311(3), 1114-1140. https://doi.org/10.1016/j.jsv.2007.10.020.
  22. Karami B, Shahsavari D and Li, L, (2018), "Temperaturedependent flexural wave propagation in nanoplate-type porous heterogenous material subjected to in-plane magnetic field", J. Thermal Stress, 41(4), 483-499. https://doi.org/10.1080/01495739.2017.1393781.
  23. Kim, R.E., Moreu, F., and Spencer, B.F. (2015), "System identification of an in-service railroad bridge using wireless smart sensors", Smart Struct. Syst., 15(3), 683-698. https://doi.org/10.12989/sss.2015.15.3.683.
  24. Ke, L.-L. and Y.-S. Wang (2014), "Free vibration of sizedependent magneto-electro-elastic nanobeams based on the nonlocal theory", Physica E Low Diemnsional Syst. Nanostruct., 63, 52-61. https://doi.org/10.1016/j.physe.2014.05.002.
  25. Kattimani, S. and M. Ray (2015), "Control of geometrically nonlinear vibrations of functionally graded magneto-electroelastic plates", J. Mech. Sci., 99, 154-167. https://doi.org/10.1016/j.ijmecsci.2015.05.012.
  26. Kumaravel, A., N. Ganesan, and R. Sethuraman (2007), "Buckling and vibration analysis of layered and multiphase magnetoelectro-elastic beam under thermal environment", Multidiscipline Model. Mater. Struct., 3(4), 461-476. https://doi.org/10.1163/157361107782106401.
  27. Liu, M.F. and T.P. Chang (2010), "Closed form expression for the vibration problem of a transversely isotropic magneto-electroelastic plate", J. Appl. Mech., 77(2). https://doi.org/10.1115/1.3176996.
  28. Malekzadeh, P. (2009), "Three-dimensional free vibration analysis of thick functionally graded plates on elastic foundations", Compos. Struct., 89(3), 367-373. https://doi.org/10.1016/j.compstruct.2008.08.007.
  29. Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B. B. (2016), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Brazil. Soc. Mech. Sci. Eng. 1-19. https://doi.org/10.1007/s40430-015-0482-6.
  30. Mantari, J., E. Bonilla, and C.G. Soares (2014), "A new tangentialexponential higher order shear deformation theory for advanced composite plates", Compos. Part B, 60, 319-328. https://doi.org/10.1016/j.compositesb.2013.12.001.
  31. Ochs, S., Li, S., Adams, C., and Melz, T. (2017), "Efficient Experimental Validation of Stochastic Sensitivity Analyses of Smart Systems", Smart Struct. Mater., 97-113. https://doi.org/10.1007/978-3-319-44507-6_5.
  32. Peng, X., M. Yan, and W. Shi, (2007), "A new approach for the preparation of functionally graded materials via slip casting in a gradient magnetic field", Scripta materialia, 56(10), 907-909. https://doi.org/10.1016/j.scriptamat.2006.12.020.
  33. Providakis, C. P., Triantafillou, T. C., Karabalis, D., Papanicolaou, A., Stefanaki, K., Tsantilis, A. and Tzoura, E. (2014). "Simulation of PZT monitoring of reinforced concrete beams retrofitted with CFRP", Smart Struct. Syst., 14(5), 811-830. https://doi.org/10.12989/sss.2014.14.5.811.
  34. Pan, E. and Han, F. (2005), "Exact solution for functionally graded and layered magneto-electro-elastic plates", J. Eng. Sci., 43(3), 321-339. https://doi.org/10.1016/j.ijengsci.2004.09.006.
  35. Pradhan, S. and T. Murmu (2009), "Thermo-mechanical vibration of FGM sandwich beam under variable elastic foundations using differential quadrature method", J. Sound Vib., 321(1), 342-362. https://doi.org/10.1016/j.jsv.2008.09.018.
  36. Razavi, S. and A. Shooshtari (2015), "Nonlinear free vibration of magneto-electro-elastic rectangular plates", Compos. Struct., 377-384. https://doi.org/10.1016/j.compstruct.2014.08.034.
  37. Rezaei, A. and A. Saidi (2016), "Application of Carrera Unified Formulation to study the effect of porosity on natural frequencies of thick porous-cellular plates", Compos. Part B, 91, 361-370. https://doi.org/10.1016/j.compositesb.2015.12.050.
  38. Shahsavari, D., Shahsavari, M., Li, L. and Karami, B. (2018), "A novel quasi-3D hyperbolic theory for free vibration of FG plates with porosities resting on Winkler/Pasternak/Kerr foundation", Aerosp. Sci. Technol., 72, 134-149. https://doi.org/10.1016/j.ast.2017.11.004.
  39. Sobhy, M. (2013), "Buckling and free vibration of exponentially graded sandwich plates resting on elastic foundations under various boundary conditions", Compos. Struct., 99, 76-87. https://doi.org/10.1016/j.compstruct.2012.11.018.
  40. Sladek, J., Sladek, V., Krahulec, S., Chen, C.S. and Young, D.L. (2015), "Analyses of Circular Magnetoelectroelastic Plates with Functionally Graded Material Properties", Mech. Adv. Mater. Struct., 22(6), 479-489. https://doi.org/10.1080/15376494.2013.807448.
  41. Tang, H., Li, L. and Hu, Y. (2018), "Buckling analysis of twodirectionally porous beam", Aerosp. Sci. Technol., 78, 471-479. https://doi.org/10.1016/j.ast.2018.04.045.
  42. Tiwari, R., Kim, K.J., and Kim, S.M. (2008), "Ionic polymermetal composite as energy harvesters", Smart Struct. Syst., 4(5), 549-563. https://doi.org/10.12989/sss.2008.4.5.549.
  43. Thai, H. T., and Choi, D. H. (2012), "A refined shear deformation theory for free vibration of functionally graded plates on elastic foundation", Compos. Part B, 43(5), 2335-2347. https://doi.org/10.1016/j.compositesb.2011.11.062.
  44. Vinyas, M. and Kattimani, S.C. (2017a), "Static studies of stepped functionally graded magneto-electro-elastic beam subjected to different thermal loads", Compos. Struct., 163, 216-237. https://doi.org/10.1016/j.compstruct.2016.12.040.
  45. Vinyas, M. and Kattimani, S.C. (2017b), "A Finite element based assessment of static behavior of multiphase magneto-electroelastic beams under different thermal loading", Struct. Eng. Mech., 62(5), 519-535. https://doi.org/10.12989/sem.2017.62.5.519.
  46. Vinyas, M. and Kattimani, S.C. (2017c), "Static behavior of thermally loaded multilayered Magneto-Electro-Elastic beam", Struct. Eng. Mech., 63(4), 481-495. https://doi.org/10.12989/sem.2017.63.4.481.
  47. Vinyas, M. and Kattimani, S.C. (2017d), "Multiphysics response of magneto-electro-elastic beams in thermo-mechanical environment", Coupled Syst. Mech., 6(3), 351-368. https://doi.org/10.12989/csm.2017.6.3.351.
  48. Vinyas, M. and Kattimani, S.C. (2017e), "A 3D finite element static and free vibration analysis of magneto-electro-elastic beam", Coupled Syst. Mech, 6(4), 465-485. https://doi.org/10.12989/csm.2017.6.4.465.
  49. Vinyas, M. and Kattimani, S.C. (2017f), "Static analysis of stepped functionally graded magneto-electro-elastic plates in thermal environment: A finite element study", Compos. Struct. 178, 63-85. https://doi.org/10.1016/j.compstruct.2017.06.068.
  50. Vinyas, M. and Kattimani, S.C. (2017g), "Hygrothermal analysis of magneto-electro-elastic plate using 3D finite element analysis", Compos. Struct., 180, 617-637. https://doi.org/10.1016/j.compstruct.2017.08.015.
  51. Vinyas, M. and Kattimani, S.C. (2018), "Finite element evaluation of free vibration characteristics of magneto-electro-elastic rectangular plates in hygrothermal environment using higherorder shear deformation theory", Compos. Struct., 202, 1339-1352. https://doi.org/10.1016/j.compstruct.2018.06.069.
  52. Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120. https://doi.org/10.1016/j.ast.2013.12.002.
  53. Wu, C.P. and Y.H. Tsai (2007), "Static behavior of functionally graded magneto-electro-elastic shells under electric displacement and magnetic flux", J. Eng. Sci., 45(9), 744-769. https://doi.org/10.1016/j.ijengsci.2007.05.002.
  54. Wattanasakulpong, N. and A. Chaikittiratana (2015), "Flexural vibration of imperfect functionally graded beams based on Timoshenko beam theory: Chebyshev collocation method", Meccanica, 1-12. https://doi.org/10.1007/s11012-014-0094-8.
  55. Wattanasakulpong, N., Prusty, B.G., Kelly, D.W. and Hoffman, M. (2012), "Free vibration analysis of layered functionally graded beams with experimental validation", Mater. Design, 36, 182-190. https://doi.org/10.1016/j.matdes.2011.10.049.
  56. Xiang, Z., Chan, T. H., Thambiratnam, D. P. and Nguyen, T. (2016), "Synergic identification of prestress force and moving load on prestressed concrete beam based on virtual distortion method", Smart Struct. Syst., 17(6), 917-933. https://doi.org/10.12989/sss.2016.17.6.917.
  57. Xin, L. and Z. Hu (2015), "Free vibration of layered magnetoelectro-elastic beams by SS-DSC approach", Compos. Struct., 125, 96-103. https://doi.org/10.1016/j.compstruct.2015.01.048.
  58. Ying, Z. G., Ni, Y. Q. and Duan, Y. F. (2017), "Stochastic vibration suppression analysis of an optimal bounded controlled sandwich beam with MR visco-elastomer core", Smart Struct. Syst., 19(1), 21-31. https://doi.org/10.12989/sss.2017.19.1.021.
  59. Ying, J., C. Lu, and W. Chen (2008), "Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations", Compos. Struct., 84(3), 209-219. https://doi.org/10.1016/j.compstruct.2007.07.004.
  60. Yun, G.J., Ogorzalek, K.A., Dyke, S.J., and Song, W. (2009), "A two-stage damage detection approach based on subset selection and genetic algorithms", Smart Struct. Syst., 5(1), 1-21. https://doi.org/10.12989/sss.2009.5.1.001.
  61. Yi, T. H., Li, H. N. and Gu, M. (2013), "Wavelet based multi-step filtering method for bridge health monitoring using GPS and accelerometer", Smart Struct. Syst., 11(4), 331-348. https://doi.org/10.12989/sss.2013.11.4.331.
  62. Zhu, J., Lai, Z., Yin, Z., Jeon, J. and Lee, S. (2001), "Fabrication of ZrO 2-NiCr functionally graded material by powder metallurgy", Mater. Chem. Phys., 2001. 68(1), 130-135. https://doi.org/10.1016/S0254-0584(00)00355-2.
  63. Zhou, D., Lo, S. H., Au, F. T. K. and Cheung, Y. K. (2006), "Three-dimensional free vibration of thick circular plates on Pasternak foundation", J. Sound Vib., 292(3), 726-741. https://doi.org/10.1016/j.jsv.2005.08.028.
  64. Zhou, Y. G., Chen, Y. M., and Ding, H. J. (2005), "Analytical solutions to piezoelectric bimorphs based on improved FSDT beam model", Smart Struct. Syst., 1(3), 309-324. https://doi.org/10.12989/sss.2005.1.3.309.

Cited by

  1. On bending analysis of perforated microbeams including the microstructure effects vol.76, pp.6, 2020, https://doi.org/10.12989/sem.2020.76.6.765