DOI QR코드

DOI QR Code

Improving Joint Reliability of Lead-free Solder on Flexible Substrate under Cyclic Bending by Adding Graphene Oxide Powder

그래핀 산화 분말을 첨가한 플렉시블 기판 솔더 접합부의 반복 굽힘 신뢰성 향상

  • Ko, Yong-Ho (Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Yu, Dong-Yurl (Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Son, Junhyuk (Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Bang, Junghwan (Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Taek-Soo (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 고용호 (한국생산기술연구원 용접접합그룹) ;
  • 유동열 (한국생산기술연구원 용접접합그룹) ;
  • 손준혁 (한국생산기술연구원 용접접합그룹) ;
  • 방정환 (한국생산기술연구원 용접접합그룹) ;
  • 김택수 (한국과학기술원 기계공학과)
  • Received : 2019.07.23
  • Accepted : 2019.09.06
  • Published : 2019.09.30

Abstract

In this study, a new approach using graphene oxide (GO) powder-composited Sn-3.0Ag-0.5Cu(in wt.%) solder paste for improving the bending reliability of solder joints between a flexible substrate and small outline package (SOP) was suggested. The GO addition slightly affected the melting temperature, however, the change in the melting temperature was not significant. Meanwhile, we observed the addition of GO could suppress IMC growth and IMC thickness of solder joint during the reflow process. Moreover, the cyclic bending test was also performed for evaluation of reliability in solder joint and we could improve the cyclic bending reliability of solder joint by adding GO powders. For 0.2 wt.% of GO added to the solder joint, the bending lifetime was increased to 20% greater than that without GO. Pull strength and ductility of the solder joint with GO were also higher than those of the joint without GO and it was assumed that this effect by adding GO could contribute to improve cyclic bending reliability of solder joint.

본 연구에서는 그래핀 산화(graphene oxide, GO) 분말 복합 Sn-3.0Ag-0.5Cu(in wt.%) 솔더페이스트를 이용한 플렉시블 기판과 SOP(small outline package) 사이의 솔더 접합부의 굽힘 신뢰성 향상에 관한 새로운 접근을 제안하였다. 솔더페이스트에 GO의 첨가는 녹는점에 약간의 영향을 미치었으나 그 차이는 미미한 것으로 나타났다. 한편, GO의 첨가는 리플로우 공정 동안 솔더 접합부의 금속간화합물(intermetallic compound, IMC) 성장과 두께를 억제 할 수 있음을 확인하였다. 더욱이 접합부의 신뢰성에 미치는 영향을 살펴보고자 반복 굽힘 시험을 진행하였으며 GO 분말의 첨가로 솔더 접합부의 반복 굽힘 신뢰성 향상 시킬 수 있었다. 0.2 wt.%의 GO가 첨가된 솔더 접합부의 경우 GO가 첨가되지 않은 경우에 비하여 굽힘 수명은 20% 가량 증가하는 것으로 나타났다. GO가 첨가된 경우 솔더 접합부의 인장 강도와 연성이 증가하게 나타났는데 이러한 GO 첨가에 의한 기계적 특성 향상이 솔더 접합부의 반복 굽힘 신뢰성 향상에 기여한 것으로 추측된다.

Keywords

References

  1. Y. Lin, X. Chen, X. Liu, and G.-Q. Lu, "Effect of Substrate Flexibility on Solder Joint Reliability. Part II: Finite Element Modeling", Microelectron. Reliab., 45(1), 143 (2005). https://doi.org/10.1016/j.microrel.2004.06.009
  2. J. W. Nah, F. Ren, K. N. Tu, S. Venk, and G. Camara, "Electromigration in Pb-free Flip Chip Solder Joints on Flexible Substrates", J. Appl. Phys., 99(2), 6 (2006).
  3. S. Ahn, K. Choi, D. Y. Park, G.-W. Jeong, S. Baek, and Y.-H. Ko, "Properties of Lead-free Solder Joints on Flexible Substrate for Automotive Electronics", J. Microelectron. Packag. Soc., 25(2), 25 (2018). https://doi.org/10.6117/KMEPS.2018.25.2.025
  4. L. Frisk, and A. Cumini, "Reliability of ACA Bonded Flip Chip Joints on LCP and PI Substrates", Solder. Surf. Mt. Tech., 18(4), 12 (2006).
  5. S. Ju, A. Facchetti, Y. Xuan, J. Liu, F. Ishikawa, P. Ye, C. Zhou, T. J. Marks, and D. B. Janes, "Fabrication of Fully Transparent Nanowire Transistors for Transparent and Flexible Electronics", Nat. Nanotechnol., 2(6), 378 (2007). https://doi.org/10.1038/nnano.2007.151
  6. T. Shuto, K. Iwanabe, K. Noda, S. Nakai, and T. Asano, "Ultrasonic Bonding of Cone Bump for Integration of Large-Scale Integrated Circuits in Flexible Electronics", Jpn. J. Appl. Phys., 52(5S1), 05DB10 (2013). https://doi.org/10.7567/JJAP.52.05DB10
  7. G. S. Jeong, D.-H. Baek, H. C. Jung, J. H. Song, J. H. Moon, S. W. Hong, I. Y. Kim, and S.-H. Lee, "Solderable and Electroplatable Flexible Electronic Circuit on A Porous Stretchable Elastomer", Nat. Commun., 3, 977 (2012). https://doi.org/10.1038/ncomms1980
  8. W. Christiaens, T. Torfs, W. Huwel, C. Van Hoof, and J. Vanfleteren, "3D Integration of Ultra-thin Functional Devices Inside Standard Multilayer Flex Laminates", Proc. 2009 European Microelectronics and Packaging Conference (EMPC), 1, IEEE (2009).
  9. X. Liu, S. Xu, G.-Q. Lu, and D. A. Dillard, "Effect of Substrate Flexibility on Solder Joint Reliability", Microelectron. Reliab., 42(12), 1883 (2002). https://doi.org/10.1016/S0026-2714(02)00269-X
  10. S. K. Ray, K. F. Beckham, and R. N. Master, "Device Interconnection Technology for Advanced Thermal Conduction Modules", IEEE Trans. Compon., Hybrids, Manuf. Technol., 15(4), 432 (1992). https://doi.org/10.1109/33.159870
  11. J.-H. Kim, T.-I. Lee, J.-W. Shin, T.-S. Kim, and K.-W. Paik, "Ultra-thin Chip-in-flex (CIF) Technology using Anisotropic Conductive Films (ACFs) for Wearable Electronics Applications", Proc. 65th Electronic Components and Technology Conference (ECTC), 714, IEEE (2015).
  12. M. Abtew, and G. Selvaduray, "Lead-free Solders in Microelectronics", Mater. Sci. Eng. R Rep., 27(5), 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3
  13. S. K. Kang, and A. K. Sarkhel, "Lead (Pb)-free Solders for Electronic Packaging", J. Electron. Mater., 23(8), 701 (1994). https://doi.org/10.1007/BF02651362
  14. Y.-H. Ko, S.-H. Yoo, and C.-W. Lee, "Evaluation on Reliability of High Temperature Lead-free Solder foR Automotive Electronics", J. Microelectron. Packag. Soc., 17(4), 35 (2010).
  15. S. Nurmi, J. Sundelin, E. Ristolainen, and T. Lepisto, "The Effect of Solder Paste Composition on the Reliability of SnAgCu Joints", Microelectron. Reliab., 44(3), 485 (2004). https://doi.org/10.1016/j.microrel.2003.08.004
  16. E. Efzan Mhd Noor, and A. Singh, "Review on the Effect of Alloying Element and Nanoparticle Additions on the Properties of Sn-Ag-Cu Solder Alloys", Solder. Surf. Mt. Tech., 26(3), 147 (2014). https://doi.org/10.1108/SSMT-02-2014-0001
  17. D.-H. Jung, B.-G. Baek, S.-H. Yim, and J. P. Jung, "High Reliability Nano-reinforced Solder for Electronic Packaging", J. Microelectron. Packag. Soc., 25(2), 1 (2018). https://doi.org/10.6117/KMEPS.2018.25.2.001
  18. T. Laine-Ylijoki, H. Steen, and A. Forsten, "Development and Validation of a Lead-free Alloy for Solder Paste Applications", IEEE Trans. Compon., Packag., Manuf. Technol. C, 20(3), 194 (1997). https://doi.org/10.1109/3476.649440
  19. S. Chellvarajoo, and M. Abdullah, "Microstructure and Mechanical Properties of Pb-free Sn-3.0Ag-0.5Cu Solder Pastes Added with NiO Nanoparticles after Reflow Soldering Process", Mater. Des., 90, 499 (2016). https://doi.org/10.1016/j.matdes.2015.10.142
  20. S. Chellvarajoo, M. Abdullah, and Z. Samsudin, "Effects of $Fe_2NiO_4$ Nanoparticles Addition into Lead Free Sn-3.0Ag-0.5Cu Solder Pastes on Microstructure and Mechanical Properties after Reflow Soldering Process", Mater. Des., 67, 197 (2015). https://doi.org/10.1016/j.matdes.2014.11.025
  21. A. Sharma, H.-R. Sohn, and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A., 47(1), 494 (2016). https://doi.org/10.1007/s11661-015-3214-8
  22. X. Liu, Y. Han, H. Jing, J. Wei, and L. Xu, "Effect of Graphene Nanosheets Reinforcement on the Performance of Sn-Ag-Cu Lead-free Solder", Mater. Sci. Eng. A, 562, 25 (2013). https://doi.org/10.1016/j.msea.2012.10.079
  23. M. Sobhy, A. El-Refai, and A. Fawzy, "Effect of Graphene Oxide Nano-Sheets (GONSs) on Thermal, Microstructure and Stress-strain Characteristics of Sn-5 wt% Sb-1 wt% Ag Solder Alloy", J. Mater. Sci.: Mater. Electron., 27(3), 2349 (2016). https://doi.org/10.1007/s10854-015-4032-x
  24. L. Xu, L. Wang, H. Jing, X. Liu, J. Wei, and Y. Han, "Effects of Graphene Nanosheets on Interfacial Reaction of Sn-Ag-Cu Solder Joints", J. Alloys Compd., 650, 475 (2015). https://doi.org/10.1016/j.jallcom.2015.08.018
  25. D. Ma, and P. Wu, "Improved Microstructure and Mechanical Properties for Sn58Bi0.7Zn Solder Joint by Addition of Graphene Nanosheets", J. Alloys Compd., 671, 127 (2016). https://doi.org/10.1016/j.jallcom.2016.02.093
  26. X. Hu, Y. Chan, K. Zhang, and K. Yung, "Effect of Graphene Doping on Microstructural and Mechanical Properties of Sn-8Zn-3Bi Solder Joints Together with Electromigration Analysis", J. Alloys Compd., 580, 162 (2013). https://doi.org/10.1016/j.jallcom.2013.05.124
  27. A. K. Geim, and K. S. Novoselov, "The Rise of Graphene", Nature, 6, 183 (2007). https://doi.org/10.1038/nmat1849
  28. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric Field Effect in Atomically Thin Carbon Films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  29. J. Huang, Q. Chen, L. Xu, and G. Zhang, "Prediction of Bending Reliability of BGA Solder Joints on Flexible Printed Circuit (FPC)", Proc. 2009 International Conference on Electronic Packaging Technology and High Density Packaging (ICEPTHDP), 1195, IEEE (2009).
  30. D. Zdzislaw, and S. Marcin, "Failure Modes and Fatigue Testing Characteristics of SMT Solder Joints", Proc. 1st Electronic Systemintegration Technology Conference (ESTC), 1187, IEEE (2006).
  31. Z. Wang, H. Zhao, W. Lou, H. Li, and L. Jin, "SMD Reliability Research Base on StolkartS Fatigue Model", Proc. 12th International Conference on Electronic Packaging Technology and High Density Packaging (ICEPT-HDP), 1, IEEE (2011).

Cited by

  1. Reliability Evaluation of Epoxy Solder Joints for Medical Electronic Devices vol.30, pp.2, 2019, https://doi.org/10.7735/ksmte.2021.30.2.127