DOI QR코드

DOI QR Code

Effects of Graphene Oxide Addition on the Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints

Graphene Oxide 첨가에 따른 Sn-3.0Ag-0.5Cu 무연솔더 접합부의 Electromigration 특성 분석

  • Son, Kirak (School of Materials Science and Engineering, Andong National University) ;
  • Kim, Gahui (School of Materials Science and Engineering, Andong National University) ;
  • Ko, Yong-Ho (Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Park, Young-Bae (School of Materials Science and Engineering, Andong National University)
  • 손기락 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 김가희 (안동대학교 신소재공학부 청정에너지소재기술연구센터) ;
  • 고용호 (한국생산기술연구원 마이크로조이닝센터/용접접합그룹) ;
  • 박영배 (안동대학교 신소재공학부 청정에너지소재기술연구센터)
  • Received : 2019.09.10
  • Accepted : 2019.09.27
  • Published : 2019.09.30

Abstract

In this study, the effects of graphene oxide (GO) addition on electromigration (EM) lifetime of Sn-3.0Ag-0.5Cu Pb-free solder joint between a ball grid array (BGA) package and printed circuit board (PCB) were investigated. After as-bonded, $(Cu,Ni)_6Sn_5$ intermetallic compound (IMC) was formed at the interface of package side finished with electroplated Ni/Au, while $Cu_6Sn_5$ IMC was formed at the interface of OSP-treated PCB side. Mean time to failure of solder joint without GO solder joint under $130^{\circ}C$ with a current density of $1.0{\times}10^3A/cm^2$ was 189.9 hrs and that with GO was 367.1 hrs. EM open failure was occurred at the interface of PCB side with smaller pad diameter than that of package side due to Cu consumption by electrons flow. Meanwhile, we observed that the added GO was distributed at the interface between $Cu_6Sn_5$ IMC and solder. Therefore, we assumed that EM reliability of solder joint with GO was superior to that of without GO by suppressing the Cu diffusion at current crowding regions.

본 연구에서는 그래핀 산화(graphene oxide, GO) 분말 첨가가 ball grid array(BGA) 패키지와 printed circuit board(PCB)간 Sn-3.0Ag-0.5Cu(SAC305) 무연솔더 접합부의 electromigration(EM) 수명에 미치는 영향에 대하여 보고 하였다. 솔더 접합 직후, Ni/Au표면처리된 패키지 접합계면에서는 $(Cu,Ni)_6Sn_5$가 생성되었으며 organic solderability preservative(OSP) 표면처리 된 PCB 접합계면에서는 $Cu_6Sn_5$ 금속간화합물(intermetallic compound, IMC)이 생성되었다. $130^{\circ}C$, $1.0{\times}10^3A/cm^2$ 전류밀도 하에서 EM 수명평가 결과, GO를 첨가하지 않은 솔더 접합부의 평균 파괴 시간은 189.9 hrs으로 도출되었고, GO를 첨가한 솔더 접합부의 평균 파괴 시간은 367.1 hrs으로 도출되었다. EM에 의한 손상은 패키지 접합계면에 비하여 pad 직경이 작은 PCB 접합계면에서 전자 유입에 의한 Cu의 소모로 인하여 발생하였다. 한편, 첨가된 GO는 하부계면의 $Cu_6Sn_5$ IMC와 솔더 사이에 분포하는 것을 확인하였다. 따라서, SAC305 무연솔더에 첨가된 GO가 전류 집중 영역에서 Cu의 빠른 확산을 억제하여 우수한 EM 신뢰성을 갖는 것으로 생각된다.

Keywords

References

  1. M. Li, D. W. Kim, S. Gu, D. Y. Parkinson, H. Barnard, and K. N. Tu, "Joule heating induced thermomigration failure in un-powered microbumps due to thermal crosstalk in 2.5D IC technology", J. Appl. Phys., 120, 075105 (2016). https://doi.org/10.1063/1.4961219
  2. J. Feng, C. Hang, Y. Tian, B. Liu, and C. Wang, "Growth kinetics of $Cu_6Sn_5$ intermetallic compound in Cu-liquid Sn interfacial reaction enhanced by electric current", Scientific reports, 8, 1775 (2018). https://doi.org/10.1038/s41598-018-20100-1
  3. The European Parliament and of the Council of the European Union, "Directive 2002/95/EC on the Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS)", JO EU L, 37, 19 (2003).
  4. J. H. Lee, N. H. Kang, C. W. Lee, and J. H. Kim, "Necessity of Low Melting Temperature Pb-free Solder Alloy and Characteristics of Representative Alloys", J. of KWJS, 24(2), 17 (2006).
  5. S. H. Kim, G. T. Park, B. R. Lee, J. M. Kim, S. Yoo, and Y. B. Park, "Effects of PCB Surface Finishes on in-situ Intermetallics Growth and Electromigration Characteristics of Sn-3.0Ag-0.5Cu Pb-free Solder Joints", J. Microelectron. Packag. Soc., 22(2), 47 (2015). https://doi.org/10.6117/kmeps.2015.22.2.047
  6. Y. E. Shin, and S. J. Hwang, "Characterization of the Sn-Ag-Cu and Sn-Cu Lead-free Solder by adding P", J. Korean Inst. Electr. Electron. Mater. Eng., 16(6), 549 (2003). https://doi.org/10.4313/JKEM.2003.16.6.549
  7. D. Suh, D. W. Kim, P. Liu, H. Kim, J. A. Weninger, C. M. Kumar, A. Prasad, B. W. Grimsley, and H. B. Tejada, "Effects of Ag Content on Fracture Resistance of Sn-Ag-Cu Lead-Free Solders under High-Strain Rate Conditions", Mater. Sci. Eng. A., 460, 595 (2007).
  8. Y. H. Ko, K. Choi, S.W. Kim, D. Y. Yu, J. Bang, and T. S. Kim, "Trends of Researches and Technologies of Electronic Packaging Using Graphene", J. Microelectron. Packag. Soc., 23(2), 1 (2016). https://doi.org/10.6117/kmeps.2016.23.2.001
  9. A. Sharma, H. R. Sohn, and J. P. Jung, "Effect of Graphene Nanoplatelets on Wetting, Microstructure, and Tensile Characteristics of Sn-3.0Ag-0.5Cu (SAC) Alloy", Metall. Mater. Trans. A., 47A, 494 (2016).
  10. M. Ding, G Wang, B. Chao, P. S. Ho, P. Su, and T. Uehling, "Effect of contact metallization on electromigration reliability of Pb-free solder joints", J. Appl. Phys., 99, 094906 (2006). https://doi.org/10.1063/1.2193037
  11. S. H. Kim, B. R. Lee, G. T. Park, J. M. Kim, S. Yoo, and Y. B. Park, "Effects of PCB surface finishes on the Mechanical and Electrical Reliabilities f Sn-0.7Cu Pb-free Solder Bump", Korean J. Met. Mater., 53(10), 735 (2015). https://doi.org/10.3365/KJMM.2015.53.10.735
  12. L. C. Tsao, "Suppressing effect of 0.5 wt.% nano-$TiO_2$ addition into Sn-3.5Ag-0.5Cu solder alloy on the intermetallic growth with Cu substrate during isothermal aging", J. Alloys Compd., 509, 8441 (2011). https://doi.org/10.1016/j.jallcom.2011.05.116
  13. A. K. Gain, Y. C. Chan, and W. K. C. Yung, "Effect of additions of $ZrO_2$ nano-particles on the microstructure and shear strength of Sn-Ag-Cu solder on Au/Ni metallized Cu pads", Microelectron. Reliab., 51, 2306 (2011). https://doi.org/10.1016/j.microrel.2011.03.042
  14. T. H. Chuang, M. W. Wu, S. Y. Chang, S. F. Ping, and L. C. Tsao,"Strengthening mechanism of nano-$Al_2O_3$ particles reinforced Sn3.5Ag0.5Cu lead-free solder", Journal of Materials Science: Materials in Electronics, 22(8), 1021 (2011) https://doi.org/10.1007/s10854-010-0253-1
  15. Y. D. Han, S. M. L. Nai, H. Y. Jing, L. Y. Xu, C. M. Tan, and J. Wei, "Development of a Sn-Ag-Cu solder reinforced with Ni-coated carbon nanotubes", Journal of Materials Science: Materials in Electronics, 22(3), 315 (2011) https://doi.org/10.1007/s10854-010-0135-6
  16. L. Zhang, and K. N. Tu, "Structure and properties of lead-free solders bearing micro and nano particles", Materials Science and Engineering R, 82, 1 (2014). https://doi.org/10.1016/j.mser.2014.06.001
  17. C. Lee, X. Wei, J. W. Kysar, and J. Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  18. S. H. Lee , D. H. Lee , W. J. Lee, and S. O. Kim, "Tailored Assembly of Carbon Nanotubes and Graphene", Adv. Funct. Mater., 21, 1338 (2011). https://doi.org/10.1002/adfm.201002048
  19. M. Sobhy, A. M. El-Refai, and A. Fawzy, "Effect of Graphene Oxide Nano-Sheets (GONSs) on thermal, microstructure and stress-strain characteristics of Sn-5 wt% Sb-1wt% Ag solder alloy", J. Mater. Sci.: Mater. Electron., 27, 2349 (2016). https://doi.org/10.1007/s10854-015-4032-x
  20. X. D. Liu, Y. D. Han, H. Y. Jing, J. Wei, and L. Y. Xu, "Effect of graphene nanosheets reinforcement on the performance of Sn-Ag-Cu lead-free solder", Mater. Sci. Eng. A, 562, 25 (2013). https://doi.org/10.1016/j.msea.2012.10.079
  21. L. Xu, L. Wang, H. Jing, X. Liu, J. Wei, and Y. Han, "Effects of graphene nanosheets on interfacial reaction of Sn-Ag-Cu solder joints", J. Alloys Compd., 650, 475 (2015). https://doi.org/10.1016/j.jallcom.2015.08.018
  22. D. Ma, and P. Wu, "Improved microstructure and mechanical properties for Sn-58Bi-0.7Zn solder joint by addition of graphene nanosheets", J. Alloys. Compd., 671, 127 (2016). https://doi.org/10.1016/j.jallcom.2016.02.093
  23. Y. H. Ko, J. D. Lee, T. Yoon, C. W. Lee, and T. S. Kim, "Controlling Interfacial Reactions and Intermetallic Compound Growth at the Interface of a Lead-free Solder Joint with Layer-by-Layer Transferred Graphene", ACS Appl. Mater. Interfaces, 8, 5679 (2016). https://doi.org/10.1021/acsami.5b11903
  24. JEP 154, "Guideline for Characterizing Solder Bump Electromigration under Constant Current and Temperature Stress", JEDEC, (2008)
  25. J. M. Kim, M. H. Jeong, S. H. Yoo, and Y. B. Park, "Effects of Surface Finishes and Current Stressing on Interfacial Reaction Characteristics of Sn-3.0Ag-0.5Cu Solder Bumps", J. Electron. Mater. 41, 791 (2012). https://doi.org/10.1007/s11664-011-1888-2
  26. J. M. Kim, M. H. Jeong, S. H. Yoo, C. W. Lee, and Y. B. Park, "Effects of Surface Finishes and loading Speeds on Shear Strength of Sn-3.0Ag-0.5Cu Solder Joints", Microelectronic Engineering, 89, 55 (2012). https://doi.org/10.1016/j.mee.2011.03.148
  27. H. P. Shin, B. W. Ahn, J. H. Ahn, J. G. Lee, K. S. Kim, D. H. Kim, and S. B. Jung, "Interfacial Reaction and Joint Strength of the Sn-58Bi Solder Paste with ENIG Surface Finished Substrate", J. of KWJS, 30, 64 (2012).
  28. J. H. Kim, and C. Y. Hyun, "Fabrication of Cu Flakes by Ball Milling of Sub-micrometer Spherical Cu Particles", J. Microelectron. Packag. Soc., 21(4), 133 (2014). https://doi.org/10.6117/kmeps.2014.21.4.133
  29. S. H. Kim, J. H. Kim, S. H. Yoo, and Y. B. Park, "Effects of Surface Finishes and Current Stressing on the Interfacial Reaction Characteristics of Sne1.2Age0.7Cue0.4In Solder Bumps", Curr. Appl. Phys., 13, S103 (2013). https://doi.org/10.1016/j.cap.2013.01.002
  30. C. E. Ho, R. Y. Tsai, Y. L. Lin, and C. R. Kao, "Effect of Cu Concentration on the Reactions between Sn-Ag-Cu Solders and Ni", J. Electron. Mater., 31(6), 584 (2002). https://doi.org/10.1007/s11664-002-0129-0
  31. C. K. Lin, Y. W. Chang, and C. Chen, "Experimental and Simulation Analysis of Concave-down Resistance Curve During Electromigration in Solder Joints", J. Appl. Phys., 115, 083707 (2014). https://doi.org/10.1063/1.4867048
  32. J. H. Lee, and Y. B. Park, "Abnormal Failure Behavior of Sn-3.5Ag Solder Bumps Under Excessive Electric Current Stressing Conditions", J. Electron. Mater., 38(10), 2194 (2009). https://doi.org/10.1007/s11664-009-0855-7
  33. M. H. Chu, S. W. Liang, C. Chen, and A. T. Huang, "Electromigration Failure Mechanism in Sn-Cu Solder Alloys with OSP Cu Surface Finish", J. Electron. Mater., 41, 2502 (2012). https://doi.org/10.1007/s11664-012-2175-6
  34. S. H. Chae, J. Im, T. Uehling, and P. S. Ho, "Effects of UBM Thickness, Contact Trace Structure and Solder Joint Scaling on Electromigration Reliability of Pb-free solder Joints", Proc. 58th Electronic Components and Technology Conference (ECTC), Orlando, 354, IEEE Components, Packaging and Manufacturing Technology Society (CPMT) (2008).
  35. Y. Kim, S. Nagao, T. Sugahara, K. Suganuma, M. Ueshima, H. J. Albrecht, K. Wilke, and J. Strogies, "Refinement of the Microstructure of Sn-Ag-Bi-In Solder, by Addition of SiC Nanoparticles, to Reduce Electromigration Damage Under High Electric Current", J. Electron. Mater., 43, 4428 (2014). https://doi.org/10.1007/s11664-014-3377-x