DOI QR코드

DOI QR Code

Analysis of the influence of nuclear facilities on environmental radiation by monitoring the highest nuclear power plant density region

  • Lee, UkJae (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Lee, Chanki (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Minji (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST)) ;
  • Kim, Hee Reyoung (Department of Nuclear Engineering, Ulsan National Institute of Science and Technology (UNIST))
  • Received : 2019.01.15
  • Accepted : 2019.04.08
  • Published : 2019.09.25

Abstract

Monitoring of environmental radioactivity is essential for ensuring the radiological safety of residents who live near nuclear power plants. Ulsan, South Korea, is surrounded by 16 nuclear power plants, the highest density in the country. In addition, the city contains facilities for conducting radiological nondestructive testing and using radioisotopes for medical purposes. It makes the confirmation of radiological safety particularly necessary. In this study, sampling points were selected based on regional characteristics, and surface water samples were pretreated and analyzed for gross beta and gamma radiation levels. In addition, the distribution of the city's gamma dose rate was determined using a mobile monitoring system and distribution visualization program. The results showed that there is no effect on the gross beta and gamma nuclides of artificial radionuclides, and the gamma dose rate of the entire region did not exceed the environmental radiation level in South Korea overall, confirming the radiological safety of the city.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. J.E. Till, H.R. Meyer, Radiological assessment: a textbook on environmental dose analysis, ORNL 15 (13) (1983). NUREG/CR-3332.
  2. M. Suomela, L. Blomqvist, T. Rahola, A. Rantavaara, Studies on Environmental Radioactivity in Finland in 1987, Finnish Centre for Radiation and Nuclear Safety (STUK), 1991. STUK-A-74.
  3. D.D. Rao, A. Baburajan, V. Sudheendran, P.C. Verma, A.G. Hegde, Evaluation and assessment of 25 years of environmental radioactivity monitoring data at Tarapur (India) nuclear site, J. Environ. Radioact. 101 (8) (2010) 630-642. https://doi.org/10.1016/j.jenvrad.2010.03.012
  4. G. Hemic, Environmental radiation monitoring in the context of regulations on dose limits to the public, J. Office de la Republique Française 4 (1988) 88-521.
  5. R.L. Kathren, Radioactivity in the Environment: Sources, distribution and surveillance, 1984.
  6. S. Takahashi (Ed.), Radiation Monitoring and Dose Estimation of the Fukushima Nuclear Accident, Springer, 2014.
  7. R. Engelbrecht, Environmental radioactivity monitoring, in: Handbook of Radioactivity Analysis, third ed., 2012, pp. 695-726.
  8. E. Mihoya, A. Minagoshi, Y. Ooki, T. Suzuki, Environmental Radiation Monitoring System, FAPIG, Tokyo, 2000, pp. 10-19.
  9. L. Garcia, G. Madurga, Low-level Measurements and Their Applications to Environmental Radioactivity, 1988.
  10. P. Shebell, K.M. Miller, Analysis of eighteen years of environmental radiation monitoring data, Environ. Int. 22 (1996) 75-83. https://doi.org/10.1016/S0160-4120(96)00092-X
  11. J.H. Kim, M.J. An, Survey Monitoring of Environmental Radioactivity in Gangneung Area, Korea Institute of Nuclear Safety, 2003. KINS/HR-089 (vol. 10).
  12. E. Ilus, K.L. Sjoblom, H. Aaltonen, S. Klemola, H. Arvela, Monitoring of Radioactivity in the Environs of Finnish Nuclear Power Stations in 1986, Finnish Centre for Radiation and Nuclear Safety, 1987. STUK-A-67.
  13. K. Hirose, Fukushima Dai-ichi nuclear power plant accident: summary of regional radioactive deposition monitoring results, J. Environ. Radioact. 111 (2011) 13-17, 2012. https://doi.org/10.1016/j.jenvrad.2011.09.003
  14. L.J.Y. Bin, Real-time environmental radiation monitoring system around the Qinshan nuclear power base, Radiat. Protect. 5 (2005) 005.
  15. L. Thinova, T. Trojek, Data analysis from monitoring of radionuclides in the nuclear power plant Temelin ecosystem area, Appl. Radiat. Isot. 67 (7-8) (2009) 1503-1508. https://doi.org/10.1016/j.apradiso.2009.02.051
  16. L. Thinova, T. Cechak, J. Kluson, T. Trojek, Use of gamma spectrometry method for environmental monitoring in the area of NPP, J. Phys. Conf. Ser. 41 (1) (2006) 569. https://doi.org/10.1088/1742-6596/41/1/071
  17. S. Furuta, S. Sumiya, H. Watanabe, M. Nakano, K. Imaizumi, M. Takeyasu, Y. Kokubun, Results of the environmental radiation monitoring following the accident at the Fukushima Daiichi nuclear power planteinterim report (ambient radiation dose rate, radioactivity concentration in the air and radioactivity concentration in the fallout), in: Radiation Protection Department, Nuclear Fuel Cycle Engineering Laboratories, vol. 35, Tokai Research and Development Center, Japan Atomic Energy Agency, 2011. JAEA-Review.
  18. S. Ichikawa, In situ monitoring with Tradescantia around nuclear power plants, Environ. Health Perspect. 37 (1981) 145. https://doi.org/10.1289/ehp.8137145
  19. M. Roig, M.M. Ribera, G. Rauret, Application of the microwave oven to the pretreatment of macrosamples in environmental radioactivity monitoring, J. Radioanal. Nucl. Chem. 190 (1) (1995) 59-69. https://doi.org/10.1007/BF02035637
  20. J.J. Wang, J. Chen, J.H. Chiu, Sequential isotopic determination of plutonium, thorium, americium, strontium and uranium in environmental and bioassay samples, Appl. Radiat. Isot. 61 (2-3) (2004) 299-305. https://doi.org/10.1016/j.apradiso.2004.03.025
  21. T.C. Chu, J.J. Wang, Y.M. Lin, Radiostrontium analytical method using crownether compound and Cerenkov counting and its applications in environmental monitoring, Appl. Radiat. Isot. 49 (12) (1998) 1671-1675. https://doi.org/10.1016/S0969-8043(98)00053-0
  22. F. Wigley, P.E. Warwick, I.W. Croudace, J. Caborn, A.L. Sanchez, Optimised method for the routine determination of Technetium-99 in environmental samples by liquid scintillation counting, Anal. Chim. Acta 380 (1) (1999) 73-82. https://doi.org/10.1016/S0003-2670(98)00676-X
  23. M. Garcia-Leon, Determination and levels of 99 Tc in environmental and biological samples, J. Radioanal. Nucl. Chem. 138 (1) (1990) 171-179. https://doi.org/10.1007/BF02049360
  24. Y.M. Lin, M.F. Chang, Y.C. Shen, P.S. Weng, Environmental radioactivity monitoring in Taiwan in the period 1974-1978, Jpn. J. Health Phys. 14 (3) (1979) 145-150. https://doi.org/10.5453/jhps.14.145
  25. E.M. Scott, P. Dixon, G. Voigt, W. Whicker, Choice and criteria for selection of sampling strategies in environmental radioactivity monitoring, Appl. Radiat. Isot. 66 (11) (2008) 1575-1581. https://doi.org/10.1016/j.apradiso.2007.10.015
  26. M.J. Madruga, Environmental radioactivity monitoring in Portugal, Appl. Radiat. Isot. 66 (11) (2008) 1639-1643. https://doi.org/10.1016/j.apradiso.2008.04.008
  27. O.S. Zorer, H. Ceylan, M. Dogru, Gross alpha and beta radioactivity concentration in water, soil and sediment of the Bendimahi River and Van Lake (Turkey), Environ. Monit. Assess. 148 (1-4) (2009) 39-46. https://doi.org/10.1007/s10661-007-0137-x
  28. V. Jobbagy, U. Watjen, J. Meresova, Current status of gross alpha/beta activity analysis in water samples: a short overview of methods, J. Radioanal. Nucl. Chem. 286 (2) (2010) 393-399. https://doi.org/10.1007/s10967-010-0709-z
  29. R. Engelbrecht, M. Schwaiger, State of the art of standard methods used for environmental radioactivity monitoring, Appl. Radiat. Isot. 66 (11) (2008) 1604-1610. https://doi.org/10.1016/j.apradiso.2008.01.021
  30. J.W.R. Dutton, Gross Beta Counting of Environmental Materials, Fisheries Radiobiological Laboratory, 1968.
  31. I. Lopes, M.J. Madruga, F.P. Carvalho, Application of liquid scintillation counting techniques to gross alpha, gross beta, radon and radium measurement in Portuguese waters, in: International Conference on Naturally Occurring Radioactive Materials (NORM IV), Szczyrk, Poland, May 17-21, 2004, pp. 357-367.
  32. L.P.L. Jinling, A study of the method of the determination of the gross beta radioactivity in sea water with barium chloride-ferric ammonium alum, Oceanol. Limnol. Sinica 1 (1978) 004.
  33. G. Karahan, A. Bayulken, Assessment of gamma dose rates around Istanbul (Turkey), J. Environ. Radioact. 47 (2) (2000) 213-221. https://doi.org/10.1016/S0265-931X(99)00034-X
  34. N.N. Jibiri, Assessment of health risk levels associated with terrestrial gamma radiation dose rates in Nigeria, Environ. Int. 27 (1) (2001) 21-26. https://doi.org/10.1016/S0160-4120(01)00039-3
  35. F.H. Al-Ghorabie, Measurements of environmental terrestrial gamma radiation dose rate in three mountainous locations in the western region of Saudi Arabia, Environ. Res. 98 (2) (2005) 160-166. https://doi.org/10.1016/j.envres.2004.06.004
  36. A.T. Ramli, A.W.M. Hussein, M.H. Lee, Geological influence on terrestrial gamma radiation dose rate in the Malaysian State of Johore, Appl. Radiat. Isot. 54 (2) (2001) 327-333. https://doi.org/10.1016/S0969-8043(00)00103-2
  37. I. P Farai, N.N. Jibiri, Baseline studies of terrestrial outdoor gamma dose rate levels in Nigeria, Radiat. Protect. Dosim. 88 (3) (2000) 247-254. https://doi.org/10.1093/oxfordjournals.rpd.a033042
  38. N. Tsoulfanidis, Measurement and Detection of Radiation, CRC Press, 2010.
  39. K.S.V. Nambi, V.N. Bapat, M. David, V.K. Sundaram, C.M. Sunta, S.D. Soman, Country-wide environmental radiation monitoring using thermoluminescence dosemeters, Radiat. Protect. Dosim. 18 (1) (1987) 31-38.
  40. Ulsan Metropolitan City Demographic Analysis since 2000, National Statistical Office, 2000. http://www.kostat.go.kr/office/dnro/rodn_nw/2/1/index.board?bmode=read&aSeq=371052.
  41. M.J. Daza, B. Quintana, M. Garcia-Talavera, F. Fernandez, Efficiency calibration of a HPGe detector in the [46.54-2000] keV energy range for the measurement of environmental samples, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 470 (3) (2001) 520-532. https://doi.org/10.1016/S0168-9002(01)00798-7
  42. M.A. Saleh, A.T. Ramli, Y. Alajerami, M.H.A. Mhareb, A.S. Aliyu, H.T. Gabdo, N.N. Garba, Assessment of radiological health implicat from ambient environment in the Muar district, Johor, Malaysia, Radiat. Phys. Chem. 103 (2014) 243-252. https://doi.org/10.1016/j.radphyschem.2014.05.054
  43. U. Lee, J.W. Bae, H.R. Kim, Environmental gamma radiation analysis for Ulsan city with the highest nuclear power plant density in Korea, J. Environ. Radioact. 178 (2017) 177-185. https://doi.org/10.1016/j.jenvrad.2017.08.015
  44. Wolseong nuclear facility environment & safety monitoring committee, reports for environmental radiation/radioactivity. http://www.wsnesc.or.kr/sub03_03.html?query=view&page=2&table=LimBo&botype=LIS_B04_01&page_num=10&bid=1004, 2017.
  45. Korea institute of nuclear safety, integrated environmental radiation monitoringnetworks. http://iernet.kins.re.kr, 2018.

Cited by

  1. Comprehensive radioecological monitoring of terrestrial ecosystems in the vicinity of the Rooppur nuclear power plant (People’s Republic of Bangladesh) vol.17, 2019, https://doi.org/10.1016/j.enmm.2021.100623