DOI QR코드

DOI QR Code

Relay Network using UAV: Survey of Physical Layer and Performance Enhancement Issue

무인항공기를 이용한 중계네트워크: 물리계층 동향분석 및 성능향상 이슈

  • Cho, Woong (Dept. Computer Engineering, Jungwon University)
  • 조웅 (중원대학교 컴퓨터공학과)
  • Received : 2019.08.14
  • Accepted : 2019.10.15
  • Published : 2019.10.31

Abstract

UAV (Unmanned Aerial Vehicle) is widely used in various areas such as civil and military applications including entertainment industries. Among them, UAV based communication system is also one of the important application areas. Relays have been received much attention in communication system due to its benefits of performance enhancement and coverage extension. In this paper, we investigate UAVs as relays especially focusing on physical layer. First, we introduce the research on UAV application for the relays, then the basic performance of relay networks in dual-hop communication system is analyzed by adopting decode-and-forward (DF) relaying protocol. The performance is represented using symbol error rate (SER) and UAV channels are applied by assuming asymmetric environments. Based on the performance analysis, we discuss performance enhancement issues by considering physical layer.

무인항공기는 오락산업을 비롯하여 민간 및 국방 분야 등의 다양한 분야에서 널리 적용되고 있다. 무인항공기를 통신시스템에 적용하는 기술 또한 주요한 응용분야 중 하나이다. 중계기는 통신성능향상 및 통신거리 확장의 장점으로 인해 통신시스템에서 많은 관심을 받아왔다. 본 논문에서는 중계기로의 무인항공기에 대한 연구동향을 물리계층에 초점을 맞추어 알아본다. 먼저 현재 무인항공기를 중계기로 적용하여 연구된 사항을 소개하고 무인항공기를 이용한 중계네트워크의 기본적인 성능을 듀얼홉 통신시스템에서 복조 후 전송 프로토콜을 적용하여 분석한다. 성능은 심벌오류율로 나타내며 무인항공기 채널은 비대칭 환경을 가정하여 적용한다. 마지막으로 성능분석을 기반으로 하여 물리계층에서 성능향상을 위해 필요한 사항에 대해 논의한다.

Keywords

References

  1. S. Hayat, E. Yanmaz, and R. Muzaffar, "Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint," IEEE Commun. Surveys Tuts. vol. 18, no. 4, 2016, pp. 2624-2661. https://doi.org/10.1109/COMST.2016.2560343
  2. Y. Zeng, R. Zhang, and T. J. Lim, "Wireless communications with unmanned aerial vehicles: Opportunities and challenges," IEEE Commun. Mag., vol. 54, no. 5, May 2016, pp. 36-42. https://doi.org/10.1109/MCOM.2016.7470933
  3. C. Zhang W. Zhang, W. Wang, L. Yang, and W. Zhang, "Research challenges and opportunities of UAV millimeter-wave communications," IEEE Wireless. Commun., vol. 16, no. 1, Feb. 2019, pp. 58-62.
  4. Y. Zeng, J. Lyu, and R. Zhang, "Cellular-connected UAV: potential, challenges, and promising technologies," IEEE Wireless. Commun., vol. 16, no. 1, Feb. 2019, pp. 120-127.
  5. J. Zhao, F. Gao, G. Ding, T. Zhang, W. Jia, and A. Nallanathan, "Integrating communications and control for UAV systems: opportunities and challenges," IEEE Access, vol. 6, Feb. 2018, pp. 67519-67527. https://doi.org/10.1109/ACCESS.2018.2879637
  6. A. Ribeiro, X. Cai, and G. B. Giannakis, "Symbol error probabilities for general cooperative links," IEEE Trans. Wireless Comm., vol. 4, no. 3, May 2005, pp. 1264-1273. https://doi.org/10.1109/TWC.2005.846989
  7. R. Cao and L. Yang, "The affecting factors in resource optimization for cooperative communications: A case study," IEEE Trans. on Wireless Commun., vol. 11, no. 12, Dec. 2012, pp. 4351-4361. https://doi.org/10.1109/TWC.2012.102612.111845
  8. W. Cho, R. Cao, and L. Yang, "Optimum resource allocation for amplify-and-forward relay networks with differential modulation," IEEE Trans. Signal Processing, vol. 56, no. 11, Nov. 2008, pp. 5680-5691. https://doi.org/10.1109/TSP.2008.926973
  9. W. Cho, B. Kim and H. Cho, "Performance of downlink with dual-hop communication systems in railway environments," J. of the Korea Institute of Electronic Communication Sciences, vol. 12, no. 1, Jan. 2017, pp. 69-74. https://doi.org/10.13067/JKIECS.2017.12.1.69
  10. Y. Chen, W. Feng, and G. Zheng, "Optimum placement of UAV as relays," IEEE Commun. Letters, vol. 22, no. 2, Feb. 2018, pp. 248-251. https://doi.org/10.1109/LCOMM.2017.2776215
  11. M. M. Azari, F. Rosas,, K-C. Chen, and S. Pollin, "Ultra reliable UAV communication using altitude and cooperative diversity," IEEE Trans. on Commun., vol. 66, no. 1, Jan. 2018, pp. 330-344. https://doi.org/10.1109/TCOMM.2017.2746105
  12. K. Li, W. Ni, X. Wang, R. P. Liu, S. S. Kanhere, and S. Jha, "Energy-efficient cooperative relaying for unmanned aerial vehicles," IEEE Trans. on Mobile Computing, vol. 15, no. 6, June 2016, pp. 1377-1386. https://doi.org/10.1109/TMC.2015.2467381
  13. D. Yang, Q. Wu, Y. Zeng, and R. Zhang, "Energy tradeoff in ground-to-UAV communication via trajectory design," IEEE Trans. on Vehicular Tech., vol. 67, no. 7, July 2018, pp. 6721-6726. https://doi.org/10.1109/TVT.2018.2816244
  14. Y. Sho, R. Enami, J. Wensowitch, and J. Camp, "Measurement-based characterization of LOS NLOS drone-to-ground channel," Proc. on IEEE WCNC, Barcelona, Spain, Apr. 2018, pp. 1-6.
  15. M. O. Hasna and M.-S. Alouini, "End-to-end performance of transmission systems with relays over Rayleigh-fading channels," IEEE Trans. Wireless Commun., vol. 2, no. 6, Nov. 2003, pp. 1126-1131. https://doi.org/10.1109/TWC.2003.819030
  16. M. K. Simon and M.-S. Alouini, Digital communication over fading channels, 2nd Edition. New York: Wiley, 2005.
  17. Y. Chen, N. Zhao, Z. Ding, and M-S. Alouini, "Multiple UAVs as relays: multi-hop single link versus multiple dual-hop links," IEEE Trans. Wireless Commun., vol. 17, no. 9, Sept. 2018, pp. 6348-6359. https://doi.org/10.1109/TWC.2018.2859394
  18. W. Cho, "Effect of energy allocation in dual-hop communication systems with DF protocol," IET Electronics Letters, vol. 54, no. 11, May 2018, pp. 726-728. https://doi.org/10.1049/el.2018.0557