DOI QR코드

DOI QR Code

Application of Chlorophyll Fluorescence Parameters for the Detection of Water Stress Ranges in Grafted Watermelon Seedlings

수박접목묘의 건조스트레스 범위 탐지를 위한 엽록소형광 지수의 적용

  • Shin, Yu Kyeong (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju) ;
  • Kim, Yong Hyeon (Department of Bioindustrial Machinery Engineering, College of Agriculture & Life Sciences, Jeonbuk National University) ;
  • Lee, Jun Gu (Department of Horticulture, College of Agriculture & Life Sciences, Jeonbuk National University, Jeonju)
  • 신유경 (전북대학교 농업생명과학대학 원예학과) ;
  • 김용현 (전북대학교 농업생명과학대학 생물산업기계공학과) ;
  • 이준구 (전북대학교 농업생명과학대학 원예학과)
  • Received : 2019.09.26
  • Accepted : 2019.10.25
  • Published : 2019.10.30

Abstract

This study was carried out to quantify the drought stress in grafted watermelon seedlings non-destructively by using chlorophyll fluorescence (CF) imaging technique rather than the visual judgment. Six-day old watermelon seedlings were grown under uniform irrigation for 3 days, and then given drought stress. Afterward, the sensor for the measurement of water content in plug tray cell unit was used to classify the drought-stress level into nine groups from D1 (53.0%, sufficient moisture state) to D9 (15.7%, extremely dry stress), and the 16 CF parameters were measured. In addition, re-irrigation was performed on the drought stressed seedlings(D5 - D9) to determine the growth and photosynthesis recovery level, which was not confirmed by visual judgment. The kinetic curve patterns of CF in three different drought stressed seedling groups were found to be different for the early detection of drought stress. All the 16 CF parameters decreased continuously with exposure to drought stress and drastically decreased from D5 (32.1%) where the visual judgment was possible. The fluorescence decline ratio (Rfd_Lss) started to decrease from the initial drought stress level (D5 - D6), and the Maximum PSII quantum yield (Fv/Fm) was significantly decreased in the later extreme drought stress range (D7 - D9) by re-irrigation recovery test. Thus, Rfd_Lss and Fv/Fm parameters were finally selected as potent indicators of growth and photosynthesis recovery in the initial and later stages of drought stress. Also, to the differences in the numerical values of the individual chlorophyll fluorescence parameters, the drought stress level was intuitively confirmed through the image. These results indicate that Rfd and Fv/Fm can be considered as potential CF parameters for the detection of low and extremely high drought stress, respectively. Furthermore, Fv/Fm can be considered as the best CF parameters for recovery at re-irrigation.

본 연구는 육안판단이 아닌 엽록소형광 이미지 측정기법을 이용하여 비파괴적으로 수박접목묘 플러그트레이 단일 셀에 대해 건조스트레스를 정량화하고자 수행되었다. 접목 후 6일차 수박접목묘를 3일동안 균일한 관수관리 하에서 재배한 후 건조스트레스를 부여하였다. 이후 플러그트레이 단일 셀 형태의 수분함량센서를 이용하여 D1(53.0%, 충분한 수분상태)단계부터 D9(15.7%, 극심한 건조스트레스)단계까지 9개 그룹으로 분류하고 엽록소 형광을 측정하였다. 또한 건조스트레스에 영향을 받은 묘(D5-D9)에 재관수하여 육안판단으로 확인되지 않은 광합성 및 생육 회복 수준을 측정하였다. 3개의 건조스트레스 단계의 엽록소형광 곡선 형태는 건조스트레스 조기 탐지에 대해 다른 양상을 보였다. 총 16개의 엽록소 형광 지수는 건조스트레스에 노출되면서 지속적으로 감소하였으며, 육안으로 판단 가능한 D5(32.1%)단계에서 크게 감소하였다. 형광감소율(Rfd_Lss)는 초기 건조스트레스 수준(D5-D6)에서 명확하게 감소하기 시작하였으며, 최대 광화학효율(Fv/Fm)은 극심한 건조스트레스 수준(D7-D9)에서 크게 감소하였다. 따라서, Rfd_Lss 및 Fv/Fm 지수를 건조스트레스의 초기 및 이후 단계에서 생육 및 광합성 회복 평가를 위한 지표로 선정하였다. 개별 엽록소형광 지수의 수치값 차이와 엽록소형광 이미지를 통해 건조스트레스 수준이 직관적으로 확인되었다. 이러한 결과는 Rfd_Lss와 Fv/Fm은 각각 초기 및 극심한 건조스트레스를 탐지하지 위한 엽록소형광 지수로 활용될 수 있으며, Fv/Fm은 재관수시 회복 평가를 위한 최적의 엽록소형광 지수로 판단된다.

Keywords

References

  1. Abbas, A., H. Yu, H. Cui, H. Yu, and X. Li. 2019. Effect of drought stress on chlorophyll fluorescence, and biomass portioning of Aegilops tauschii L. Applied Ecology and Environmental Research 17:1071-1082. https://doi.org/10.15666/aeer/1701_10711082
  2. Baker, N.R. and E. Rosenqvist. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities. Journal of Experimental Botany 55:1607-1621. https://doi.org/10.1093/jxb/erh196
  3. Baker, N.R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo. Annual Review of Plant Biology 59:89-113. https://doi.org/10.1146/annurev.arplant.59.032607.092759
  4. Banks, J.M. 2018. Chlorophyll fluorescence as a tool to identify drought stress in Acer genotypes. Environmental and Experimental Botany 155:118-127. https://doi.org/10.1016/j.envexpbot.2018.06.022
  5. Bradford, K.J. and T.C. Hsiao. 1982. Stomatal behavior and water relations of waterlogged tomato plants. Plant Physiology 70:1508-1513. https://doi.org/10.1104/pp.70.5.1508
  6. Cen, H., H. Weng, J. Yao, M. He, J. Lv, S. Hua, H. Li, and Y. He. Y. 2017. Chlorophyll fluorescence imaging uncovers photosynthetic fingerprint of citrus huanglongbing. Frontiers in Plant Science 8:1509. https://doi.org/10.3389/fpls.2017.01509
  7. Chaerle, L., I. Leininen, H.G. Jones, and D.V.D. Streaten. 2007. Monitoring and screening plant populations with combined thermal and chlorophyll fluorescence imaging. Journal of Experimental Botany 58:773-784. https://doi.org/10.1093/jxb/erl257
  8. Chaves M. M. and M. M. Oliveira. 2004. Mechanisms underlying plant resilience to water deficits: prospects for watersaving agiculture. Journal of Experimental Botany 55:2365-2384. https://doi.org/10.1093/jxb/erh269
  9. Force, L., C. Critchley, and J.J.S. Rensen. 2003. New fluorescence parameters for monitoring photosynthesis in plants. Photosynthesis Research 78:17-33. https://doi.org/10.1023/A:1026012116709
  10. Gashi, B., F. Banani, and E. Kongjika. 2013. Chlorophyll fluorescence imaging of photosynthetic activity and pigment contents of the resurrection plants Ramonda serbica and Ramonda nathaliae during dehydration and rehydration. Physiology and Molecular Biology of Plants 19:333-341. https://doi.org/10.1007/s12298-013-0175-5
  11. Gorbe, E. and A. Calatayud. 2012. Applications of chlorophyll fluorescence imaging technique in horticultural research: A review. Scientia Horticulturae 138:24-35. https://doi.org/10.1016/j.scienta.2012.02.002
  12. Hazrati, S., Z. Tahmasebi-Savestani, S.A.M. Modarres- Sanavy, A. Mokhassi-Bidgoli, and S. Nicola. 2016. Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiology and Biochemistry 106:141-148. https://doi.org/10.1016/j.plaphy.2016.04.046
  13. Kim, H.J., M.Y. Roh, D.H. Lee, S.H. Jeon, S.O. Hur, J.Y. Choi, S.O. Chung, and J.Y. Rhee. 2011. Feasibility test on automatic control of soil water potential using a portable irrigation controller with an electrical resistance-based watermark sensor. Journal of Bio-Environment Control 20:93-100 (in Korean).
  14. Lawor D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell & Environment 25:275-294. https://doi.org/10.1046/j.0016-8025.2001.00814.x
  15. Li, G.L., H.X. Wu, Y.Q. Sun, and S.Y. Zhang. 2013. Response of chlorophyll fluorescence parameters to drought stress in sugar beet seedlings. Russian Journal of Plant Physiology 60:337-342. https://doi.org/10.1134/S1021443713020155
  16. Mahajan, S. and N. Tuteja. 2005. Cold, salinity and drought stresses: An overview. Archives of Biochemistry and Biophysics 444:139-158. https://doi.org/10.1016/j.abb.2005.10.018
  17. Mishra, K.B., A. Mishara, K. Novotna, B. Rapantova, P. Hodanova, O. Urban, and K. Klem. 2016. Chlorophyll a fluorescence, under half of the adaptive growth-irradiance, for high-throughput sensing of leaf-water deficit in Arabidopsis thaliana accessions. Plant Methods 12:46. https://doi.org/10.1186/s13007-016-0145-3
  18. Murchie, E.H. and T. Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Journal of Experimental Botany 64:3983-3998. https://doi.org/10.1093/jxb/ert208
  19. Park, I.S., C.Y. Shim, and J.M. Choi. 2017. Influence of postplanting fertilizer concentrations supplied through sub-irrigation in winter season cultivation of tomato on the seedling growth and changes in the chemical properties of root media. Protected Horticulture and Plant Factory 26:35-42 (in Korean). https://doi.org/10.12791/KSBEC.2017.26.1.35
  20. Ruban, A.V. 2016. Nonphotochemical chlorophyll fluorescence quenching: mechanism and effectiveness in protecting plants from photodamage. Plant Physiology 170:1903-1916. https://doi.org/10.1104/pp.15.01935
  21. Rungrat, T., M. Awlia, T. Brown, R. Cheng, X. Sirault, J. Fajkus, M. Trtilek, F. Furbank, M. Badger, M. Tester, B.J. Pogson, J.O. Borevitz, and P. Wilson. 2016. Using phenomic analysis of photosynthetic function for abiotic stress response gene discovery. The Arabidopsis book 14.
  22. Wang, Z., G. Li, H. Sun, L. Ma, Y. Guo, Z. Zhao, H. Gao, and L. Mei. 2018. Effects of drought stress on photosynthesis and photosynthetic electron transport chain in young apple tree leaves. The Company of Biologists 7:035279.
  23. Widaryanto, E., K.P. Wicaksono, and H. Najiyah. 2017. Drought effect simulation on the growth and yield quality of melon (Cucumis melo L.) Journal of Agronomy 16:147-153. https://doi.org/10.3923/ja.2017.147.153
  24. Wu Z. Z., Y. Q. Ying, Y. B. Zhang., Y. F. Bi., A. K. Wang., and X. H. Du. 2018. Alleviation of drought stress in Phyllostachys edulis by N and P application. Scientific Reports 8:228. https://doi.org/10.1038/s41598-017-18609-y
  25. Yamamoto, Y., H. Hori, S. Kai, T. Ishikawa, A. Ohnishi, N. Tsumura, and N. Morita. 2013. Quality control of photosystem II: reversible and irreversible protein aggregation decides the fate of photosystem II under excessive illumination. Frontiers in Plant Science 4:433. https://doi.org/10.3389/fpls.2013.00433
  26. Yao, J., D. Sun, H. Cen, H. Xu, H. Weng,. F. Yaun, and Y. He. 2018. Phenotyping of Arabidopsis drought stress response using kinetic chlorophyll fluorescence and multicolor fluorescence imaging. Frontiers in Plant Science 9:903. https://doi.org/10.3389/fpls.2018.00903
  27. Zlatev, Z.S. 2013. Drought-induced changes and recovery of photosynthesis in two bean cultivars (Phaseolus vulgaris L.). Emirates Journal of Food & Agriculture 25:1014-1023. https://doi.org/10.9755/ejfa.v25i12.16734