DOI QR코드

DOI QR Code

Multi-sensor data fusion based assessment on shield tunnel safety

  • Huang, Hongwei (Department of Geotechnical Engineering, Tongji University) ;
  • Xie, Xin (Department of Geotechnical Engineering, Tongji University) ;
  • Zhang, Dongming (Department of Geotechnical Engineering, Tongji University) ;
  • Liu, Zhongqiang (Natural Hazards, Norwegian Geotechnical Institute (NGI)) ;
  • Lacasse, Suzanne (Natural Hazards, Norwegian Geotechnical Institute (NGI))
  • Received : 2019.07.03
  • Accepted : 2019.08.29
  • Published : 2019.12.25

Abstract

This paper proposes an integrated safety assessment method that can take multiple sources data into consideration based on a data fusion approach. Data cleaning using the Kalman filter method (KF) was conducted first for monitoring data from each sensor. The inclination data from the four tilt sensors of the same monitoring section have been associated to synchronize in time. Secondly, the finite element method (FEM) model was established to physically correlate the external forces with various structural responses of the shield tunnel, including the measured inclination. Response surface method (RSM) was adopted to express the relationship between external forces and the structural responses. Then, the external forces were updated based on the in situ monitoring data from tilt sensors using the extended Kalman filter method (EKF). Finally, mechanics parameters of the tunnel lining were estimated based on the updated data to make an integrated safety assessment. An application example of the proposed method was presented for an urban tunnel during a nearby deep excavation with multiple source monitoring plans. The change of tunnel convergence, bolt stress and segment internal forces can also be calculated based on the real time deformation monitoring of the shield tunnel. The proposed method was verified by predicting the data using the other three sensors in the same section. The correlation among different monitoring data has been discussed before the conclusion was drawn.

Keywords

Acknowledgement

Supported by : Natural Science Foundation Committee, MOST of China

References

  1. Bennett, P. J., Soga, K., Wassell, I., Fidler, P., Abe, K., Kobayashi, Y. and Vanicek, M. (2010a), "Wireless sensor networks for underground railway applications: Case studies in Prague and London", Smart Struct. Syst., 6(5-6), 619-639. https://doi.org/10.12989/sss.2010.6.5_6.619.
  2. Bennett, P.J., Kobayashi, Y., Soga, K. and Wright, P. (2010b), "Wireless sensor network for monitoring transport tunnels", Proc. Inst. Civ. Eng. Geotech. Eng., 163, 147-156. DOI:10.1680/geng.2010.163.3.147.
  3. Bhalla, S., Yang. Y.W., Zhao. J. and Soh, C.K. (2005), "Structural health monitoring of underground facilities - Technological issues and challenges", Tunn. Undergr. Sp. Tech., 20, 487-500. DOI: 10.1016/j.tust.2005.03.003.
  4. BTS (2004), Tunnel lining design guide, British Tunneling Society Institution of Civil Engineers, London: Thomas Telford.
  5. Bucher, C.G. and Bourgund, U. (1990), "A fast and efficient response surface approach for structural reliability problems", Struct. Saf., 7, 57-66. DOI:10.1016/0167-4730(90)90012-E.
  6. Bucher, C. G. and Most, T. (2008), "A comparison of approximate response functions in structural reliability analysis", Probabilist. Eng. Eng. Mech., 23, 154-163. DOI:10.1016/j.probengmech.2007.12.022.
  7. Chen, J.J., Zhang, W. and Wang, J.H. (2017), "Data Fusion Analysis Method for Assessment on Safety Monitoring Results of Deep Excavations", J. Aerosp. Eng., 30, B4015005. DOI:10.1061/(ASCE)AS.1943-5525.0000593.
  8. Dolezalov, M. (2001), "Tunnel complex unloaded by a deep excavation", Comput. Geotech., 28, 469-493. DOI:10.1016/s0266-352x(01)00005-2.
  9. Erazo, K. and Hernandez, E.M. (2016), "Bayesian model-data fusion for mechanistic postearthquake damage assessment of building structures", J. Eng. Mech.., 142, 04016062. DOI:10.1061/(ASCE)EM.1943-7889.0001114.
  10. Fan, Q.G., Fang, W.M. and Su, X.B. (2002), "Experimental study on the waterproof capability of the hydro-expansive rubber sealing cushion in shield tunnel", Underg. Space., 22, 335-338. (in Chinese) https://doi.org/10.3969/j.issn.1673-0836.2002.04.013
  11. Frangopol, D.M. (2008), "Probability concepts in engineering:emphasis on applications to civil and environmental engineering", Struct. Infrastruct. Eng., 4, 413-414. DOI:10.1080/15732470802027894.
  12. GB18173.4 (2010), Code for Polymer Water-proof Materials-Part 4: Rubber Gasket for Shield-Driven Tunnel, Beijing, China (in Chinese).
  13. GB50157 (2013), Code for design of metro. Beijing: Ministry of Housing and Urban-rural Development of China, Beijing, China (in Chinese).
  14. Hall, D. L. and Llinas, J. (1998), "An introduction to multi-sensor data fusion", Int. Symp. Circuits Sys., 6-23. DOI:10.1109/ISCAS.1998.705329.
  15. Housner, G.W., Bergman, L.A., Caughey, T.K., Chassiakos, A.G., Claus, R.O., Masri, S.F., Skelton, R.E., Soong, T.T., Spencer. B. F. and Yao, J.T.P. (1997), "Structural control: past, present, and future", J. Eng. Mech., 123, 897-971. DOI:10.1061/(ASCE)0733-9399(1997)123:9(897).
  16. Hu, X., Wang, B. and Ji, H. (2013), "A wireless sensor networkbased structural health monitoring system for highway bridges", Comput. Aided Civil Infrastruct. Eng., 28, 193-209. DOI:10.1111/j.1467-8667.2012.00781.x.
  17. Huang, H.W., Shao, H., Zhang, D.M. and Wang, F. (2017), "Deformational responses of operated shield tunnel to extreme surcharge: a case study", Struct. Infrastruct. Eng., 13, 345-360. DOI: 10.1080/15732479.2016.1170156.
  18. Huang, H.W., Xu, R. and Zhang, W. (2013), "Comparative performance test of an inclinometer wireless smart sensor prototype for subway tunnel", Int. J. Architect. Eng. Constr., 2, 25-34. https://doi.org/10.7492/IJAEC.2013.003
  19. International Tunneling Association (ITA). (2000), "Guidelines for the design of shield of tunnel lining", Tunn. Undergr. Sp. Tech., 15(3), 303-331. DOI: 10.1016/s0886-7798(00)00058-4.
  20. Kalman, R.E. (1960), "A new approach to linear filtering and prediction problems", J. Basic Eng. Trans., 82, 35-45. DOI:10.1115/1.3662552.
  21. Liu, J.F., Wang, H.F, Ge, Y. and Huang, J.L. (2013), "Application of multi-source information fusion technology in the construction of a secure and emergent transportation platform", ICTIS 2013, 237-243.
  22. Li, X.Y., Zhang, L.M. and Jiang, S.H. (2016a), "Updating performance of high rock slopes by combining incremental time-series monitoring data and three-dimensional numerical analysis", Int. J. Rock Mech. Min. Sci., 83, 252-261. DOI:10.1016/j.ijrmms.2014.09.011.
  23. Li, X.Y., Zhang, L.M., Jiang, S.H., Li, D.Q. and Zhou, C.B. (2016b), "Assessment of slope stability in the monitoring parameter space", J. Geotech. Geoenviron. Eng., 142, 04016029. DOI: 10.1061/(ASCE)GT.1943-5606.0001490.
  24. Liao, S.M., Peng, F.L. and Shen, S.L. (2008), "Analysis of shearing effect on tunnel induced by load transfer along longitudinal direction", Tunn. Undergr. Sp. Tech., 23, 421-430. DOI: 10.1016/j.tust.2007.07.001.
  25. Liu, X., Bai, Y., Yuan, Y. and Mang, H.A. (2016), "Experimental investigation of the ultimate bearing capacity of continuously jointed segmental tunnel linings", Struct. Infrastruct. Eng., 12, 1-16. DOI: 10.1080/15732479.2015.1117115.
  26. Mair, R.J. (2008), "Tunnelling and geotechnics: new horizons", Geotech., 58, 695-736. DOI: 10.1680/geot.2008.58.9.695.
  27. Mohamad, H., Soga, K., Bennett, P.J., Mair, R. J. and Lim, C.S. (2012), "Monitoring twin tunnel interaction using distributed optical fiber strain measurements", J. Geotech. Geoenviron. Eng., 138, 957-967. DOI: 10.1061/(ASCE)GT.1943-5606.0000656.
  28. Ou, J.P. (2003), "Some recent advances of structural health monitoring systems for civil infrastructure in mainland China", P. Int. Conf. Struct. Health Moni. Intell. Infrastruct., Tokyo, Japan, 131-144. DOI: 10.1117/12.634044.
  29. Peng, M., Li, X.Y., Li, D.Q., Jiang, S.H. and Zhang, L.M. (2014), "Slope safety evaluation by integrating multi-source monitoring information", Struct. Saf., 49, 65-74. DOI:10.1016/j.strusafe.2013.08.007.
  30. Pinto, F. and Whittle, A.J. (2014), "Ground movements due to shallow tunnels in soft ground. I: analytical solutions", J. Geotech. Geoenviron. Eng., 140, 04013040. DOI:10.1061/(ASCE)GT.1943-5606.0000948.
  31. Rajashekhar, M.R. and Ellingwood, B.R. (1993), "A new look at the response surface approach for reliability analysis", Struct. Saf., 12, 205-220. DOI:10.1016/0167-4730(93)90003-J.
  32. Santos, F.L., Jesus, V.A.M.D. and Valente, D.S.M. (2012), "Modeling of soil penetration resistance using statistical analyses and artificial neural networks", Acta Sci.-Agron., 34, 219-224. DOI:10.4025/actasciagron.v34i2.11627.
  33. Sharma, J.S., Hefny, A.M., Zhao, J. and Chan, C.W. (2001), "Effect of large excavation on deformation of adjacent MRT tunnels", Tunn. Undergr. Space Technol. Incor. Trenchless Tech. Res., 16, 93-98. DOI: 10.1016/S0886-7798(01)00033-5.
  34. Sun, J., Zhang, J. and Wang, X. (2012), "Multi-sensor data fusion and target location in pipeline monitoring and a pre-warning system based on multi-seismic sensors", ICPTT., Wuhan, China, 961-974. DOI: 10.1061/9780784412619.099.
  35. Torbol, M., Gomez, H. and Feng, M. (2013), "Fragility analysis of highway bridges based on long-term monitoring data", Comput. Aided Civil Infrastruct. Eng., 28, 178-192. DOI: 10.1111/j.1467-8667.2012.00805.x.
  36. Waltz, E. and Llinas, J. (1990), Multi. data fus., Artech house, Boston, USA.
  37. Wang, F., Huang, H.W., He, B., Wu. Y., Shao. H. and Wu. H.M. (2016), "Wireless sensing on shield tunnels in Shanghai"; P. Int. Conf. Smart Infrastruct. Cons., Cambridge, United Kingdom, June.
  38. Wang, F., Ling, X., Xun, X. and Feng, Z. (2014), "Structural stiffness identification based on the extended kalman filter research", Abs. Appl. Ana., 1-8. DOI: 10.1155/2014/103102.
  39. Welch, G. and Bishop, G. (2001), "An introduction to the kalman filter", University of North Carolina at Chapel Hill. DOI:10.1145/800233.807054.
  40. Xie, X., Zhang, D. and Huang, H. (2018), "Data analysis of shield tunnel deformation from real-time monitoring with wireless sensing network", P. Int. Conf. Tunn. Undergr. Space Technol., Shanghai, China, May. DOI: 10.1007/978-981-13-0017-2_40.
  41. Yang, Y., Xu, J. and Soh, C.K. (2005), "Generic impedance-based model for structure-piezoceramic interacting system", J. Aerospace Eng., 18, 93-101. DOI: 10.1061/(asce)0893-1321(2005)18:2(93).
  42. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst, 12(3-4), 363-379. https://doi.org/10.12989/sss.2013.12.3_4.363.
  43. Ye, X.W., Yi, T.H., Wen, C. and Su, Y.H. (2015), "Reliabilitybased assessment of steel bridge deck using a mesh-insensitive structural stress method", Smart. Struct. Syst., 16(2), 367-382. https://doi.org/10.12989/sss.2015.16.2.367.
  44. Ye, X.W., Dong, C.Z. and Liu, T. (2016), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
  45. Zhang, D. M., (2015), "Performance-based design and its resilience analysis of underground structure in multi-layered ground", Ph.D. Dissertation, Tongji University, Shanghai. (in Chinese).