DOI QR코드

DOI QR Code

Comparison of Membrane Degradation of PEMFC by Fenton Reaction and OCV Holding

Fenton 반응과 OCV Holding에 의한 PEMFC 고분자 전해질 막의 열화비교

  • Oh, Sohyung (Department of Chemical Engineering, Sunchon National University) ;
  • Kwag, Ahhyun (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Daewoong (Department of Chemical Engineering, Sunchon National University) ;
  • Lee, Mooseok (Kolon Industries Research Institute) ;
  • Lee, Donghoon (Kolon Industries Research Institute) ;
  • Park, Kwon-Pil (Department of Chemical Engineering, Sunchon National University)
  • 오소형 (순천대학교 화학공학과) ;
  • 곽아현 (순천대학교 화학공학과) ;
  • 이대웅 (순천대학교 화학공학과) ;
  • 이무석 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 이동훈 (코오롱인더스트리(주) Eco연구소 중앙기술원) ;
  • 박권필 (순천대학교 화학공학과)
  • Received : 2019.08.01
  • Accepted : 2019.09.24
  • Published : 2019.12.01

Abstract

The Fenton reaction, which evaluates the electrochemical durability of polymer membranes of polymer electrolyte fuel cells (PEMFC), and the degradation of polymer membranes by OCV holding method are compared. The Fenton reaction is a method that can evaluate the chemical durability of the polymer membrane at outside the cell in a shorter time than the OCV Holding method. The Fenton reaction was carried out at 30% hydrogen peroxide, 10 ppm iron, and $80^{\circ}C$ for 24 hours. OCV Holding was driven at $90^{\circ}C$, 30% relative humidity and OCV for 168 hours. The Fenton reaction caused a lot of degradation inside the polymer membrane. On the other hand, in OCV Holding, the membrane thickness was thinned by the entire surface and internal degradation. The fluorine emission rate was more than 10 times higher than that of OCV Holding due to the Fenton reaction. The hydrogen permeation rate increased about 30% at 24 hours of Fenton reaction. At OCV Holding, hydrogen permeability decreased after 24 hours and then increased. As a whole, there was a difference in a membranes deteriorated by Fenton reaction and OCV Holding.

고분자전해질연료전지(PEMFC)의 고분자막의 전기화학적 내구성을 평가하는 펜톤(Fenton)반응과 개회로전위 유지(OCV Holding)방법에 의한 고분자 막의 열화 결과를 비교하였다. 펜톤 반응은 셀 밖에서 OCV Holding 방법보다 더 짧은 시간에 고분자막의 화학적인 내구를 평가할 수 있는 방법이다. 펜톤 반응은 과산화수소 30%, 철이온 80 ppm, $80^{\circ}C$에서 24시간 실시하였다. OCV Holding은 $90^{\circ}C$, 상대습도 30%, OCV에서 168시간 시간 구동하였다. 펜톤 반응에 의해서는 고분자막의 내부에서 열화가 많이 발생하는 현상을 보였다. 반면에 OCV Holding에서는 표면과 내부 전체적인 열화에 의해 막 두께가 얇아졌다. 펜톤 반응에 의해 불소유출속도는 OCV Holding에 비해 10배 이상 높았다. 수소투과속도는 펜톤 반응 24시간에 약 30% 증가하였다. OCV Holding에서는 24시간에 수소투과도가 감소하였고 이후 증가하는 경향을 보였다. 전체적으로 펜톤 반응과 OCV Holding에 의한 고분자막 열화는 차이가 있었다.

Keywords

References

  1. Borup, R., Meyers, J., Pivovar, B., Kim, Y. S., Mukundan, R., Garland, N., Myers, D., Wilson, M., Garzon, F., Wood, D., Zelenay, P., More, K., Stroh, K. and Iwashita, N., "Scientific Aspects of Polymer Electrolyte Fuel Cell Durability and Degradation," Chem. Rev., 107, 3904-51(2007). https://doi.org/10.1021/cr050182l
  2. Williams, M. C., Strakey, J. P. and Surdoval, W. A., "The U. S. Department of Energy, Office of Fossil Energy Stationary Fuel cell Program," J. Power Sources, 143(1-2), 191-196(2005). https://doi.org/10.1016/j.jpowsour.2004.12.003
  3. U. S. DOE Fuel Cell Technologies Office, Multi-Year Research, Development, and Demonstration Plan, Section 3.4 Fuel Cells, p. 1(2016).
  4. Wilson, M. S., Garzon, F. H., Sickafus, K. E. and Gottesfeld, S. "Surface Area Loss of Supported Platinum in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 140, 2872-2877(1993). https://doi.org/10.1149/1.2220925
  5. Knights, S. D., Colbow, K. M., St-Pierre, J. and Wilkinson, D. P., "Aging Mechanism and lifetime of PEFC and DMFC," J. Power Sources, 127, 127-134(2004). https://doi.org/10.1016/j.jpowsour.2003.09.033
  6. Luo, Z., Li, D., Tang, H., Pan, M. and Ruan, R., "Degradation Behavior of Membrane-electrode-assembly Materials in 10-cell PEMFC Stack," Int. J. Hydrogen Energy, 31, 1838-1854 (2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  7. Pozio, A., Silva, R. F., Francesco, M. D. and Giorgi, L., "Nafion Degradation in PEFCs from End Plate Iron Contamination," Electrochim. Acta, 48, 1543-1548(2003). https://doi.org/10.1016/S0013-4686(03)00026-4
  8. Xie, J., Wood III, D. L., Wayne, D. N., Zawodinski, T. A., Atanassov, P. and Borup, R. L., "Durability of PEFCs at High Humidity Conditions," J. Electrochem. Soc., 152, A104-A113 (2005). https://doi.org/10.1149/1.1830355
  9. Curtin, D. E., Lousenberg, R. D., Henry, T, J., Tangeman, P. C. and Tisack, M. E., "Advanced Materials of Improved PEMFC Performance and Life," J. of Power Sources, 131, 41-48(2004). https://doi.org/10.1016/j.jpowsour.2004.01.023
  10. Wilkinson, D. P. and St-Pierre, J., in: W. Vielstich, H. A. Gasteiger. A. Lamm (Eds.). Handbook of Fuel Cell: Fundamentals Technology and Applications, Vol. 3, John Wiley & Sons Ltd., Chichester, England, 611-612(2003).
  11. Collier, A., Wang, H., Yaun, X., Zhang, J. and Wilison, D. P., "Degradation of Polymer Electrolyte Membranes," Int. J. Hydrogen Energy, 31, 1838-1854(2006). https://doi.org/10.1016/j.ijhydene.2006.05.006
  12. Wang, H. T., Pan, M. and Li, D., "Ex Situ Investigation of the Proton Exchange Membrane Chemical Decomposition," Int. J. Hydrogen Energy., 33(9), 2283-2288(2008). https://doi.org/10.1016/j.ijhydene.2008.01.052
  13. Kinumoto, T., Inaba, M., Nakayama, Y., Ogata, K., Umebayashi, R. and Takaka, A.,"Durability of Perfluorinated Ionomer Membrane Against Hydrogen Peroxide," J. Power Sources, 158(2), 1222-1228(2006). https://doi.org/10.1016/j.jpowsour.2005.10.043
  14. Kim, T. H., Lee, J. H., Cho, G. J. and Park, K. P., "Degradation of Nafion Membrane by Oxygen Radical," Korean Chem. Eng. Res., 44(6), 597-601(2006).
  15. Pearman, B. P., Mohajeri, N., Slattery, D. K., Hampton, M. D., Seal, S. and Cullen, D. A., "The Chemical Behavior and Degradation Mitigation Effect of Cerium Oxide Nanoparticles in Perfluorosulfonic Acid Polymer Electrolyte Membranes", Polym. Degrad. Stab., 98(9), 1766-1772(2013). https://doi.org/10.1016/j.polymdegradstab.2013.05.025
  16. Hao, J., Jiang, Y., Gao, X., Xie, F., Shao, Z. and Yi, B., "Degradation Reduction of Polybenzimidazole Membrane Blended with $CeO_2$ as a Regenerative Free Radical Scavenger," J. Membr. Sci., 522(15), 23-30(2017). https://doi.org/10.1016/j.memsci.2016.09.010
  17. Zhu, H., Pei, S., Tang, J., Li, H., Wang, L., Yuan, W. and Zhang, Y., "Enhanced Chemical Durability of Perfluorosulfonic Acid Membranes Through Incorporation of Terephthalic Acid as Radical Scavenger," J. Membr. Sci., 432, 66-72(2013). https://doi.org/10.1016/j.memsci.2012.12.050
  18. Chang, Z., Yan, H., Tian, J., Pan, H. and Pu, H., "The Effect of Electric Field on the Oxidative Degradation of Polybenzimi Dazole Membranes Using Electro-fenton Test," Polymer Degradation and Stability, 138, 98-105(2017). https://doi.org/10.1016/j.polymdegradstab.2017.02.014
  19. Gummalla, M., Atrazhev, V. V., Condit, D., Cipollini, N., Madden, T., Kuzminyh, N. Y., Weiss, D. and Burlatsky, S. F., "Degradation of Polymer-Electrolyte Membranes in Fuel Cells: II. Theoretical Model," J. Electrochem. Soc., 157, B1542(2010). https://doi.org/10.1149/1.3481450
  20. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  21. Hwang, B. C., Oh, S. H., Lee, M. S., Lee, D. H. and Park, K. P., "Decrease in Hydrogen Crossover through Membrane of Polymer Electrolyte Membrane Fuel Cells at the Initial Stages of an Acceleration Stress Test," Korean J. Chem. Eng., 35(11), 2290-2295(2018). https://doi.org/10.1007/s11814-018-0142-5
  22. Liang, Z., Chen, W., Liu, J., Wang, S., Zhou, Z., Li, W., Sun, G. and Xin, Q., "FT-IR Study of the Microstructure of Nafion Membrane," J. Membrane Science, 233, 39-44(2004). https://doi.org/10.1016/j.memsci.2003.12.008
  23. Wong, K. H. and Kjeang, E., "Macroscopic In-Situ Modeling of Chemical Membrane Degradation in Polymer Electrolyte Fuel Cells," J. Electrochem. Soc., 161(9), F823-F832(2014). https://doi.org/10.1149/2.0031409jes

Cited by

  1. 국내 연료전지 분야 연구동향 분석: 전극, 전해질, 분리판, 스택, 시스템, BOP, 진단분석 분야 vol.31, pp.6, 2020, https://doi.org/10.7316/khnes.2020.31.6.530
  2. PEMFC 고분자막의 화학적 내구성 평가를 위한 Fenton 반응 조건에 관한 연구 vol.59, pp.1, 2019, https://doi.org/10.9713/kcer.2021.59.1.49