DOI QR코드

DOI QR Code

Recent Research Trend in Lateral Flow Immunoassay Strip (LFIA) with Colorimetric Method for Detection of Cancer Biomarkers

암 바이오마커 검출용 비색법 기반 측면 흐름 면역 크로마토그래피 분석법(LFIA) 스트립의 최신 연구 동향

  • Lee, Sooyoung (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 이수영 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2020.11.11
  • Accepted : 2020.11.21
  • Published : 2020.12.10

Abstract

Successful early diagnosis of cancer diseases such as lung, prostate, liver and adrenocortical carcinoma is a key step in determining the cost of treatment, survival rate, and cure rate. Most of current cancer diagnosis systems including biopsy, computed tomography (CT), positron emission tomography (PET)-CT, magnetic resonance imaging (MRI), ultrasonography, etc., require expensive and complicated equipment with highly trained human resources. Global medical and scientific communities have thus made numerous efforts on developing effective but rapid disease management system via introducing a wide spectrum of point-of-care medical diagnosis devices. Among them, a lateral flow immunoassay strip technique has gained a great attention due to many advantages such as cost-effectiveness, short inspection time, and user friendly accessibility. In this mini-review, we will highlight recent research trend on the development of colorimetry based LFIA strips for cancer diagnosis and discuss the future research direction and potential applications.

암(예: 폐암, 전립선암, 간암, 부신겉질샘암종 등)의 조기 진단은 치료비용, 생존율, 완치 여부를 결정짓는 아주 중요한 단계다. 현재의 암 진단 시스템(예: 조직검사, 컴퓨터단층쵤영, 양전자방출단층쵤영, 자기공명영상, 초음파촬영 등)은 고가의 장비를 사용하거나 훈련된 고급 인력만이 수행 가능하기 때문에 신속한 조기 진단에 적합하지 못하다. 국제 의과학 사회는 현장검사(point of care) 디바이스 개발을 통한 효과적인 질병 관리 시스템 개발을 지향하고 있으며, 다양한 분석법 기반의 디바이스가 개발되어왔다. 이 중에서도 측면 흐름 면역 크로마토그래피 분석법 스트립은 경제적인 비용, 짧은 검사 시간, 사용자의 쉬운 접근성 등의 많은 이점들이 있다. 본 논문에서는 LFIA 스트립의 최신 연구 동향을 바탕으로 암 진단 관점에서의 비색법 기반 LFIA 스트립의 연구 방향 및 잠재적 응용에 대해 논의하고자 한다.

Keywords

References

  1. B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics, 8, 39 (2018). https://doi.org/10.3390/diagnostics8020039
  2. S. Taeb, S. Mortazavi, A. Ghaderi, H. Mozdarani, C. de Almeida, M. Kardan, S. Mortazavi, A. Soleimani, I. Nikokar, and M. Haghani, Alterations of PSA, CA15. 3, CA125, Cyfra21-1, CEA, CA19. 9, AFP and Tag72 tumor markers in human blood serum due to long term exposure to high levels of natural background radiation in Ramsar, Iran, J. Radiat. Res., 12, 133 (2014). https://doi.org/10.1269/jrr.12.133
  3. L. Syedmoradi, M. Daneshpour, M. Alvandipour, F. A. Gomez, H. Hajghassem, and K. Omidfar, Point of care testing: The impact of nanotechnology, Biosens. Bioelectron., 87, 373-387 (2017). https://doi.org/10.1016/j.bios.2016.08.084
  4. M. Urdea, L. A. Penny, S. S. Olmsted, M. Y. Giovanni, P. Kaspar, A. Shepherd, P. Wilson, C. A. Dahl, S. Buchsbaum, G. Moeller, and D. C. Hay Burgess, Requirements for high impact diagnostics in the developing world, Nature, 444, 73-79 (2006). https://doi.org/10.1038/nature05448
  5. V.-T. Nguyen, S. Song, S. Park, and C. Joo, Recent advances in high-sensitivity detection methods for paper-based lateral-flow assay, Biosens. Bioelectron., 152, 112015 (2020). https://doi.org/10.1016/j.bios.2020.112015
  6. Y. Huang, T. Xu, W. Wang, Y. Wen, K. Li, L. Qian, X. Zhang, and G. Liu, Lateral flow biosensors based on the use of micro- and nanomaterials: A review on recent developments, Microchim. Acta, 187, 70 (2019). https://doi.org/10.1007/s00604-019-3822-x
  7. R. Wong and H. Tse, Lateral Flow Immunoassay, Springer Science & Business Media (2008).
  8. H. Li, D. Han, M. A. Hegener, G. M. Pauletti, and A. J. Steckl, Flow reproducibility of whole blood and other bodily fluids in simplified no reaction lateral flow assay devices, Biomicrofluidics, 11, 024116-024116 (2017). https://doi.org/10.1063/1.4979815
  9. C. Parolo, A. Sena-Torralba, J. F. Bergua, E. Calucho, C. Fuentes-Chust, L. Hu, L. Rivas, R. Alvarez-Diduk, E. P. Nguyen, S. Cinti, D. Quesada-Gonzalez, and A. Merkoci, Tutorial: Design and fabricationof nanoparticle-based lateral-flow immunoassays, Nat. Protoc., 15, 3788-3816 (2020). https://doi.org/10.1038/s41596-020-0357-x
  10. T. Mahmoudi, M. de la Guardia, and B. Baradaran, Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends, Trends Anal. Chem., 125, 115842 (2020). https://doi.org/10.1016/j.trac.2020.115842
  11. A. Moyano, E. Serrano-Pertierra, M. Salvador, J. C. Martinez-Garcia, M. Rivas, and M. C. Blanco-Lopez, Magnetic lateral flow immunoassays, Diagnostics, 10, 288 (2020). https://doi.org/10.3390/diagnostics10050288
  12. Z. Qin, W. C. Chan, D. R. Boulware, T. Akkin, E. K. Butler, and J. C. Bischof, Significantly improved analytical sensitivity of lateral flow immunoassays by using thermal contrast, Angew. Chem. Int. Ed., 51, 4358-4361 (2012). https://doi.org/10.1002/anie.201200997
  13. S. I. Yoo, Hybrid materials for engineering the intrinsic properties of fluorophores, KIC News, 15, 2-10 (2012).
  14. W. J. Paschoalino, S. Kogikoski, J. T. Barragan, J. F. Giarola, L. Cantelli, T. M. Rabelo, T. M. Pessanha, and L. T. Kubota, Emerging considerations for the future development of electrochemical paper-based analytical devices, ChemElectroChem, 6, 10-30 (2019). https://doi.org/10.1002/celc.201800677
  15. A. E. Urusov, A. V. Zherdev, and B. B. Dzantiev, Towards lateral flow quantitative assays: Detection approaches, Biosensors, 9, 89 (2019). https://doi.org/10.3390/bios9030089
  16. H. Yang, W. Xu, and Y. Zhou, Signal amplification in immunoassays by using noble metal nanoparticles: A review, Microchim. Acta, 186, 859 (2019). https://doi.org/10.1007/s00604-019-3904-9
  17. H. Ye and X. Xia, Enhancing the sensitivity of colorimetric lateral flow assay (CLFA) through signal amplification techniques, J. Mater. Chem. B, 6, 7102-7111 (2018). https://doi.org/10.1039/C8TB01603H
  18. D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018). https://doi.org/10.14478/ace.2017.1109
  19. M. Sajid, A.-N. Kawde, and M. Daud, Designs, formats and applications of lateral flow assay: A literature review, J. Saudi Chem. Soc., 19, 689-705 (2015). https://doi.org/10.1016/j.jscs.2014.09.001
  20. M. O. Rodriguez, L. B. Covian, A. C. Garcia, and M. C. Blanco-Lopez, Silver and gold enhancement methods for lateral flow immunoassays, Talanta, 148, 272-278 (2016). https://doi.org/10.1016/j.talanta.2015.10.068
  21. Z. Li, H. Chen and P. Wang, Lateral flow assay ruler for quantitative and rapid point-of-care testing, Analyst, 144, 3314-3322 (2019). https://doi.org/10.1039/C9AN00374F
  22. M. Shen, Y. Chen, Y. Zhu, M. Zhao and Y. Xu, Enhancing the sensitivity of lateral flow immunoassay by centrifugation-assisted flow control, Anal. Chem., 91, 4814-4820 (2019). https://doi.org/10.1021/acs.analchem.9b00421
  23. C. Fernandez-Sanchez, C. J. McNeil, K. Rawson, O. Nilsson, H. Y. Leung, and V. Gnanapragasam, One-step immunostrip test for the simultaneous detection of free and total prostate specific antigen in serum, J. Immunol. Methods, 307, 1-12 (2005). https://doi.org/10.1016/j.jim.2005.08.014
  24. Z. Gao, H. Ye, Q. Wang, M. J. Kim, D. Tang, Z. Xi, Z. Wei, S. Shao, and X. Xia, Template Regeneration in galvanic replacement: A route to highly diverse hollow nanostructures, ACS Nano, 14, 791-801 (2020). https://doi.org/10.1021/acsnano.9b07781
  25. Z. Gao, H. Ye, D. Tang, J. Tao, S. Habibi, A. Minerick, D. Tang, and X. Xia, Platinum-decorated gold nanoparticles with dual functionalities for ultrasensitive colorimetric in vitro diagnostics, Nano Lett., 17, 5572-5579 (2017). https://doi.org/10.1021/acs.nanolett.7b02385
  26. P.-Y. You, F.-C. Li, M.-H. Liu, and Y.-H. Chan, Colorimetric and fluorescent dual-mode immunoassay based on plasmon-enhanced fluorescence of polymer dots for detection of PSA in whole blood, ACS Appl. Mater. Interfaces, 11, 9841-9849 (2019). https://doi.org/10.1021/acsami.9b00204
  27. X. Lu, T. mei, Q. Guo, W. Zhou, X. Li, J. Chen, X. Zhou, N. Sun, and Z. Fang, Improved performance of lateral flow immunoassays for alpha-fetoprotein and vanillin by using silica shell-stabilized gold nanoparticles, Microchim. Acta, 186, 2 (2018). https://doi.org/10.1007/s00604-018-3107-9
  28. P. Preechakasedkit, W. Siangproh, N. Khongchareonporn, N. Ngamrojanavanich, and O. Chailapakul, Development of an automated wax-printed paper-based lateral flow device for alpha-feto-protein enzyme-linked immunosorbent assay, Biosens. Bioelectron., 102, 27-32 (2018). https://doi.org/10.1016/j.bios.2017.10.051
  29. H. Yang, Q. He, Y. Chen, D. Shen, H. Xiao, S. A. Eremin, X. Cui, and S. Zhao, Platinum nanoflowers with peroxidase-like property in a dual immunoassay for dehydroepiandrosterone, Microchim. Acta, 187, 592 (2020). https://doi.org/10.1007/s00604-020-04528-9
  30. T. Jiang, Y. Song, D. Du, X. Liu, and Y. Lin, Detection of p53 protein based on mesoporous Pt-Pd nanoparticles with enhanced peroxidase-like catalysis, ACS Sens., 1, 717-724 (2016). https://doi.org/10.1021/acssensors.6b00019
  31. Y. Yao, W. Guo, J. Zhang, Y. Wu, W. Fu, T. Liu, X. Wu, H. Wang, X. Gong, X.-j. Liang, and J. Chang, Reverse fluorescence enhancement and colorimetric bimodal signal readout immunochromatography test strip for ultrasensitive large-scale screening and postoperative monitoring, ACS Appl. Mater. Interfaces, 8, 22963-22970 (2016). https://doi.org/10.1021/acsami.6b08445
  32. F. Liu, H. Zhang, Z. Wu, H. Dong, L. Zhou, D. Yang, Y. Ge, C. Jia, H. Liu, Q. Jin, J. Zhao, Q. Zhang, and H. Mao, Highly sensitive and selective lateral flow immunoassay based on magnetic nanoparticles for quantitative detection of carcinoembryonic antigen, Talanta, 161, 205-210 (2016). https://doi.org/10.1016/j.talanta.2016.08.048
  33. K. Na, S. K. Jeong, M. J. Lee, S. Y. Cho, S. A. Kim, M. J. Lee, S. Y. Song, H. Kim, K. S. Kim, H. W. Lee, and Y. K. Paik, Human liver carboxylesterase 1 outperforms alpha-fetoprotein as biomarker to discriminate hepatocellular carcinoma from other liver diseases in Korean patients, Int. J. Cancer, 133, 408-415 (2013). https://doi.org/10.1002/ijc.28020
  34. S. H. Lee, E. Goh, and H. J. Lee, Research trend of biochip sensors for biomarkers specific to diagnostics of lung cancer diseases, Appl. Chem. Eng., 29, 645-651 (2018). https://doi.org/10.14478/ACE.2018.1110
  35. A. Fajri, E. Goh, S. H. Lee, and H. J. Lee, Analysis of human serum amyloid A-1 concentrations using a lateral flow immunoassay with CdSe/ZnS quantum dots, Appl. Chem. Eng., 30, 429-434 (2019). https://doi.org/10.14478/ACE.2019.1044
  36. S. Choi, M. Chen, V. L. Cryns, and R. A. Anderson, A nuclear phosphoinositide kinase complex regulates p53, Nat. Cell Biol., 21, 462-475 (2019). https://doi.org/10.1038/s41556-019-0297-2
  37. N. A. Byzova, A. V. Zherdev, B. N. Khlebtsov, A. M. Burov, N. G. Khlebtsov, and B. B. Dzantiev, Advantages of highly spherical gold nanoparticles as labels for lateral flow immunoassay, Sensors, 20, 3608 (2020). https://doi.org/10.3390/s20123608
  38. S. C. Razo, N. A. Panferova, V. G. Panferov, I. V. Safenkova, N. V. Drenova, Y. A. Varitsev, A. V. Zherdev, E. N. Pakina, and B. B. Dzantiev, Enlargement of gold nanoparticles for sensitive immunochromatographic diagnostics of potato brown rot, Sensors, 19, 153 (2019). https://doi.org/10.3390/s19010153
  39. J. Kang, G. Yeom, H. Jang, J. Oh, C.-J. Park, and M.-G. Kim, Development of replication protein A-conjugated gold nanoparticles for highly sensitive detection of disease biomarkers, Anal. Chem., 91, 10001-10007 (2019). https://doi.org/10.1021/acs.analchem.9b01827
  40. J. Kim, A. S. Campbell, B. E.-F. de Avila, and J. Wang, Wearable biosensors for healthcare monitoring, Nat. Biotechnol., 37, 389-406 (2019). https://doi.org/10.1038/s41587-019-0045-y