DOI QR코드

DOI QR Code

Synthesis and Biological Evaluation of Water-Soluble Oleanolic Acid Derivatives for use as Melanogenesis Inhibitors

멜라닌 생합성 억제제로서 수용성 Oleanolic Acid 유도체의 합성 및 활성 평가

  • Received : 2020.09.17
  • Accepted : 2020.11.11
  • Published : 2020.12.10

Abstract

This study was focused on the synthesis of methoxy polyethylene glycol-oleanolic acid ester (mPEG-OA derivative) and investigation of its water solubility and anti-melanogenic effects. mPEG-OA derivative was identified by 1H and 13C NMR and FT-IR spectroscopic measurements. The water solubilities of mPEG-OA derivative and OA were found to be 13 and 0.013 mg/mL and that of mPEG-OA was found to be 1000-fold higher than that of OA. The effects of mPEG-OA derivative and OA on cell viability were measured using B16F10 melanoma cells. The viability of cells treated with mPEG-OA derivative (250 μM) increased 4-fold compared to that of cells treated with OA (62.5 μM). At mPEG-OA derivative and OA concentrations where the cell viability was unaffected, the inhibitory effect of mPEG-OA derivative and OA on the melanogenesis in B16F10 melanoma cells were 36 and 35% at 50 and 10 μM, respectively. The expression level of microphthalmia-associated transcription (MITF) was also reduced in B16F10 melanoma cells treated with mPEG-OA and OA. Overall, mPEG-OA derivative showed excellent water solubility and inhibitory effects of the melanogenesis, which could be used as a potential formulation for use in whitening functional cosmetic material.

본 연구에서는 메톡시폴리에틸렌글리콜(methoxy polyethylene glycol)과 올레아놀산(Oleanolic acid) 유도체(mPEG-OA derivative)를 합성하였으며, 합성된 유도체에 대하여 수용액에서의 용해도와 멜라닌 생성억제 효과를 평가하였다. mPEG-OA 유도체의 합성된 구조는 1H NMR, 13C NMR 및 FT-IR로 확인하였다. 수용액에서 mPEG-OA 유도체와 OA의 용해도를 측정한 결과, mPEG-OA 유도체는 13 mg/mL, OA는 0.013 mg/mL로서, mPEG-OA 유도체의 수용성이 OA보다 1,000배 높게 나타냈다. 세포생존율은 B16F10 melanoma cells에서, mPEG-OA 유도체의 세포생존율(250 μM)이 OA로 처리한 세포생존율(62.5 μM)과 비교하여 4배 증가하였다. 멜라닌 생합성 억제 효과는 세포생존율이 영향을 받지 않는 농도에서 측정하였으며, mPEG-OA 유도체는 50 μM의 농도에서 36%, OA는 10 μM의 농도에서 35%의 억제 효과를 나타내었다. B16F10 melanoma cells에서 MITF (microphthalmia-associated transcription factor)의 발현 억제 수준은 mPEG-OA 유도체는 50 μM의 농도에서 59%, OA는 10 uM의 농도에서 49%의 억제 효과를 나타내었다. 종합적으로 mPEG-OA 유도체와 OA의 수용성 및 미백활성을 비교한 결과, mPEG-OA 유도체는 OA보다 뛰어난 수용성을 가지며, 멜라닌 생합성을 억제하는 효과를 나타냄으로써 미백 기능성 화장품 소재로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. G. E. Costin and V. J. Hearing, Human skin pigmentation: Melanocytes modulate skin color in response to stress, Faseb. J., 21, 976-994 (2007). https://doi.org/10.1096/fj.06-6649rev
  2. J. L. Rees, Genetics of hair and skin color, Annu. Rev. Genet., 37, 67-90 (2003). https://doi.org/10.1146/annurev.genet.37.110801.143233
  3. G. Prota, Progress in the chemistry of melanins and related metabolites, Med. Res. Rev., 8, 525-525 (1988). https://doi.org/10.1002/med.2610080405
  4. M. V. Schiaffino, Signaling pathways in melanosome biogenesis and pathology, Int. J. Biochem. Cell Biol., 42, 1094-1104 (2010). https://doi.org/10.1016/j.biocel.2010.03.023
  5. G. Cardinali, S. Ceccarelli, D. Kovacs, N. Aspite, L. V. Lotti, M. R. Torrisi, and M. Picardo, Keratinocyte growth factor promotes melanosome transfer to keratinocytes, J. Invest. Dermatol., 125, 1190-1199 (2005). https://doi.org/10.1111/j.0022-202X.2005.23929.x
  6. S. Y. Park, M. L. Jin, Y. H. Kim, Y. Kim, and S. J. Lee, Aromatic-turmerone inhibits α-MSH and IBMX-induced melanogenesis by inactivating CREB and MITF signaling pathways, Arch. Dermatol. Res., 303, 737-744 (2011). https://doi.org/10.1007/s00403-011-1155-7
  7. T. Tian, X. Liu, E. S. Lee, J. Sun, Z. Feng, L. Zhao and C. Zhao, Synthesis of novel oleanolic acid and ursolic acid in C-28 position derivatives as potential anticancer agent, Arch. Pharm. Res., 40, 458-468 (2017). https://doi.org/10.1007/s12272-016-0868-8
  8. J. Liu, oleanolic acid and ursolic acid: Research perspectives, J. Ethnopharmacol., 100, 92-94 (2005). https://doi.org/10.1016/j.jep.2005.05.024
  9. L. O. Somova, A. Nadar, P. Rammanan, and F. O. Shode, Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension, Phytomedicine, 10, 115-121 (2003). https://doi.org/10.1078/094471103321659807
  10. Z. Ovesna, A. Vachalkova, K. Horvathova, and D. Tothova, Pentacyclic triterpenoic acids: New chemoprotective compounds, Neo-plasma, 51, 327-333 (2004).
  11. H. Sheng and H. Sun, Synthesis, biology and clinical significance of pentacyclic triterpenes: A multi-target approach to prevention and treatment of metabolic and vascular diseases, Nat. Prod. Rep., 28, 543-593 (2011). https://doi.org/10.1039/c0np00059k
  12. S. K. Han, Y. G. Kim, H. C. Kang, J. R. Huh, J. Y. Kim, N. I. Baek, D. K. Lee, and D. G. Lee, Oleanolic acid from Fragaria ananassa calyx leads to inhibition of α-MSH-induced melanogenesis in B16-F10 melanoma cells, J. Appl. Biol. Chem., 57(6), 735-742 (2014).
  13. I. J. Jin, Y. I. KO, Y. M. Kim, and S. K. Han, Solubilization of oleanolic acid and ursolic acid by cosolvency, Arch. Pharm. Res., 20(3), 267-274 (1997).
  14. S. Zalipsky, C. Gilon, and A. Zilkha, Attachment of drugs to polyethylene glycols, Eur. Polym. J., 19, 1177-1183 (1983). https://doi.org/10.1016/0014-3057(83)90016-2
  15. Y. Wang, Y. Tian, P. Zhu, Y. Ma, J. He and J. Lei, Self-assembled nanoparticles based on poly(ethylene glycol)-oleanolic acid conjugates for co-delivery of anticancer drugs, RSC Adv., 7, 29591-29598 (2017). https://doi.org/10.1039/C7RA04366J
  16. O. Wong, N. Tsuzuki, B. Nghiem, J. Kuehnhoff, T. Itoh, K. Masaki, J. Huntington, R. Konishi, J. H. Rytting, and T. Higuchi, Unsaturated cyclic ureas as new non-toxic biodegradable transdermal penetration enhancers. II. Evaluation study, Int. J. Pharm., 52, 191-202 (1989). https://doi.org/10.1016/0378-5173(89)90220-2
  17. M. Johansen, B. Mollgaard, P. K. Wotton, C. Larsen, and A. Hoelgaard, In vitro evaluation of dermal prodrug delivery-transport and bioconversion of a series of aliphatic esters of metronidazole, Int. J. Pharm., 32, 199-206 (1986). https://doi.org/10.1016/0378-5173(86)90179-1
  18. J. M. Harris and R. B. Chess, Effect of pegylation on pharmaceuticals, Nat. Rev. Drug Discov., 2, 214-221 (2003). https://doi.org/10.1038/nrd1033
  19. M. L. Bilodeau, J. D. Greulich, R. L. Hullinger, C. Bertolotto, R. Ballotti, and O. M. Andrisani, BMP-2 stimulates tyrosinase gene expression and melanogenesis in differentiated melanocytes, Pigm. Cell Res., 14, 328-336 (2001). https://doi.org/10.1034/j.1600-0749.2001.140504.x
  20. M. H. Choi, S. H. Yang, and H. J. Shin, Inhibition of melanogenesis by domestic bamboo leaves (Sasa coreana Nakai) extract in B16F10 melanoma cells, Biotechnol. Bioprocess Eng., 33(1), 41-47 (2018).
  21. Y. R. Kim, Y. J. Hong, and K. S. Yang, Anti-inflammatory effect and inhibition of melanin biosynthesis of Clematic mandshurica, Yakhak Hoeji, 58(1), 47-52 (2014).
  22. R. B. Greenwald, PEG drugs: An overview, J. Control Release, 74, 159-171 (2001). https://doi.org/10.1016/S0168-3659(01)00331-5
  23. H. Yang, J. J. Morris, and S. T. Lopina, Polyethylene glycolpolyamidoamine dendritic micelle as solubility enhancer and the effect of the length of polyethylene glycol arms on the solubility of pyrene in water, J. Colloid Interface Sci., 273, 148-154 (2004). https://doi.org/10.1016/j.jcis.2003.12.023

Cited by

  1. Lactobacillus plantarum에 의한 흰 민들레 발효물의 항산화 및 광노화 억제 효과 vol.22, pp.4, 2020, https://doi.org/10.5762/kais.2021.22.4.554