DOI QR코드

DOI QR Code

Determination of an Effective Method to Evaluate Resistance of Bottle Gourd Plant to Fusarium oxysporum f. sp. lagenaria

박 덩굴쪼김병 저항성 검정조건 구명

  • Kim, Sang Gyu (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Oak Jin (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Sun Yi (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Kim, Dae Young (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Huh, Yun-Chan (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • An, Se Woong (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jang, Yoon ah (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Moon, Ji hye (Vegetable division, National Institute of Horticultural and Herbal Science, Rural Development Administration)
  • 김상규 (국립원예특작과학원 채소과) ;
  • 이옥진 (국립원예특작과학원 채소과) ;
  • 이선이 (국립원예특작과학원 채소과) ;
  • 김대영 (국립원예특작과학원 채소과) ;
  • 허윤찬 (국립원예특작과학원 채소과) ;
  • 안세웅 (국립원예특작과학원 채소과) ;
  • 장윤아 (국립원예특작과학원 채소과) ;
  • 문지혜 (국립원예특작과학원 채소과)
  • Received : 2019.11.06
  • Accepted : 2020.01.23
  • Published : 2020.01.31

Abstract

Fusarium wilt caused by Fusarium oxysporum is a devastating disease limiting production of watermelon in Korea. The best way to control diseases is to use resistant gourd rootstock on watermelon. This study was conducted to establish an efficient screening method for resistant bottle gourd to Fusarium oxysporum f. sp. lagenaria. To develop an efficient inoculation method, incubation temperature after inoculation (15, 20, 25, and 30℃), inoculum concentration (1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), and growth stages of seedlings (7, 10, 13, and 16 days) was investigated. Disease development of Fusarium wilt of bottle gourd was little affected by differences in incubation temperature and growth stages of seedlings. But resistant lines were more susceptible and appeared more severe symptoms at the higher inoculation level. Taken together, we suggest that an effective screening method for resistant gourd plant to Fusarium wilt is to dip the roots of 10-day old seedlings in spore suspension of 1 × 105 - 1 × 106 conidia·mL-1, for 30 min, to transplant the seedlings into a non-infected soil, and then to incubate the inoculated plants in a growth room at 25℃ for 3 weeks to develop Fusarium wilt.

Fusarim oxysporum에 의한 덩굴쪼김병은 수박 재배에 큰 피해를 일으키는 중요한 병이다. 이 병을 방제하기 위해 덩굴 쪼김병 저항성 박 대목을 이용하는 것이 가장 좋은 방법이다. 본 연구는 박 덩굴쪼김병 저항성 자원을 선발할 수 있는 방법을 확립하기 위해 수행하였다. 효과적인 접종법을 개발하기 위해 접종 후 온도(15, 20, 25, 30℃), 접종 농도(1 × 105, 5 × 105, 1 × 106, and 5 × 106 conidia·mL-1), 접종 시기(파종 7, 10, 13, 16일 후)를 조사하였다. 박 덩굴쪼김병을 접종하였을 때 접종 후 배양 온도나 파종 후 접종 시기의 영향이 적었다. 그러나, 덩굴쪼김병에 저항성인 박의 경우 접종농도가 높을수록 발병이 심하게 나타났다. 따라서, 박 덩굴쪼김병에 대한 효과적인 접종법으로 파종 10일 된 유묘 뿌리를 1 × 105 - 1 × 106 conidia·mL-1 농도로 30분간 접종한 후 감염되지 않은 토양에 옮겨 심고 25℃에서 3주 동안 재배하는 것을 제안한다.

Keywords

References

  1. Armstrong, G. M. and Armstrong, J. K. 1978. Formae speciales and races of Fusarium oxysporum causing wilts of Cucurbitaceae. Phytopathology 68:19-28. https://doi.org/10.1094/Phyto-68-19
  2. Bletsos, F. A. 2005. Use of grafting and calcium cyanamide as alternatives to methyl bromide soil fumigation and their effects on growth, yield, quality and fusarium wilt control in melon. J. Phytopathology 153:155-161. https://doi.org/10.1111/j.1439-0434.2005.00945.x
  3. Davis, A. R., Perkins-Veazie, P., Hassell, R., Levi, A., King, S. R. and Zhang, X. 2008a. Grafting effects on vegetable quality. HortScience 43:1670-1672. https://doi.org/10.21273/HORTSCI.43.6.1670
  4. Davis, A. R., Perkins-Veazie, P., Sakata, Y., Lopez-Galarza, S., Maroto, J. V., Lee, S.-G., Huh, Y.-C., Sun, Z., Miguel, A., King, S. R., Cohen, R. and Lee, J.-M. 2008b. Cucurbit Grafting. Crit. Rev. Plant. Sci. 27:50-74. https://doi.org/10.1080/07352680802053940
  5. Hibar, K., Daami-Remadi, M., Jabnoun-Khiareddine, H. and El Mahjoub, M. 2006. Temperature effect on mycelial growth and on disease incidence of Fusarium oxysporum f. sp. radicis-lycopersici. Plant Pathol. J. 5:233-238. https://doi.org/10.3923/ppj.2006.233.238
  6. Huh, Y. C., Lee, W. M., Ko, H. C., Park, D. K., Park, K. S., Lee, H. J., Lee, S. G. and Ko, K. D. 2012. Development of Fusarium wilt-resistant F1 hybrids of bottle gourd (Lagenaria siceraria Standl.) for watermelon rootstocks. Adana: University of Cukurova, Ziraat Fakultesi.
  7. Huh, Y. C., Om, Y. H. and Lee, J. M. 2002. Utilization of citrullus germplasm with resistance to fusarium wilt (Fusarium oxysporum f. sp. niveum) for watermelon rootstocks. Acta Hortic. 588:127-132. https://doi.org/10.17660/actahortic.2002.588.18
  8. Jo, E. J., Choi, Y. H., Jang, K. S., Kim, H. and Choi, G. J. 2017. Development of a simple and effective bioassay method to evaluate resistance of watermelon plants to Fusarium oxysporum f. sp. niveum. Res. Plant Dis. 23:168-176 (in Korean). https://doi.org/10.5423/RPD.2017.23.2.168
  9. Jo, E. J., Lee, J. H., Choi, Y. H., Kim, J.-C. and Choi, G. J. 2015. Development of an efficient method of screening for watermelon plants resistant to Fusarium oxysporum f. sp. niveum. Kor. J. Hort. Sci. Technol. 33:409-419 (in Korean).
  10. Karaca, F., Yetisir, H., Solmaz, I., Candir, E., Kurt, S., Sari, N. and Guler, Z. 2012. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, yield and quality. Turk. J. Agric. For. 36:167-177.
  11. Kim, S., Huh, Y.-C., Park, T.-S., Yang, E.-Y., Chae, S.-Y., An, S.-W., Park, D.-G. and Moon, J.-H. 2016. Symptoms of infected seedlings and screening of breeding lines and F1 hybrids for resistance to Fusarium wilt in bottle gourd (Lagenaria siceraria Standl.). J. Korean Soc. Int. Agric. 28:553-557 (in Korean). https://doi.org/10.12719/KSIA.2016.28.4.553
  12. King, S. R., Davis, A. R., Liu, W. and Levi, A. 2008. Grafting for disease resistance. HortScience 43:1673-1676. https://doi.org/10.21273/HORTSCI.43.6.1673
  13. Landa, B. B., Navas-Cortes, J. A., Del Mar Jimenez-Gasco, M., Katan, J., Retig, B. and Jimenez-Diaz, R. M. 2006. Temperature response of chickpea cultivars to races of Fusarium oxysporum f. sp. ciceris, causal agent of Fusarium wilt. Plant Dis. 90:365-374. https://doi.org/10.1094/PD-90-0365
  14. Latin, R. X. and Snell, S. J. 1986. Comparison of methods for inoculation of muskmelon with Fusarium oxysporum f. sp. melonis. Plant Dis. 70:297-300. https://doi.org/10.1094/PD-70-297
  15. Lee, J.-M., Kubota, C., Tsao, S. J., Bie, Z., Echevarria, P. H., Morra, L. and Oda, M. 2010. Current status of vegetable grafting: Diffusion, grafting techniques, automation. Sci. Hortic. 127:93-105. https://doi.org/10.1016/j.scienta.2010.08.003
  16. Lee, J. H., Kim, J.-C., Jang, K. S., Choi, Y. H. and Choi, G. J. 2014. Efficient screening method for resistance of cucumber cultivars to Fusarium oxysporum f. sp. cucumerinum. Res. Plant Dis. 20:245-252 (in Korean). https://doi.org/10.5423/RPD.2014.20.4.245
  17. Lee, W. J., Jang, K. S., Choi, Y. H., Kim, H. T., Kim, J.-C. and Choi, G. J. 2015a. Development of an efficient simple mass-screening method for resistant melon to Fusarium oxysporum f. sp. melonis. Res. Plant Dis. 21:201-207 (in Korean). https://doi.org/10.5423/RPD.2015.21.3.201
  18. Lee, W. J., Lee, J. H., Jang, K. S., Choi, Y. H., Kim, H. T. and Choi, G. J. 2015b. Development of efficient screening methods for melon plants resistant to Fusarium oxysporum f. sp. melonis. Kor. J. Hort. Sci. Technol. 33:70-82 (in Korean)
  19. Martyn, R. D. 2014. Fusarium wilt of watermelon: 120 years of research. Hortic. Rev. 42:349-442.
  20. Miguel, A., Maroto, J. V., San Bautista, A., Baixauli, C., Cebolla, V., Pascual, B., Lopez, S. and Guardiola, J. L. 2004. The grafting of triploid watermelon is an advantageous alternative to soil fumigation by methyl bromide for control of Fusarium wilt. Sci. Hortic. 103:9-17. https://doi.org/10.1016/j.scienta.2004.04.007
  21. Ristaino, J. B. and Thomas, W. 1997. Agriculture, methyl bromide, and the ozone hole: can we fill the gaps? Plant Dis. 81:964-977. https://doi.org/10.1094/PDIS.1997.81.9.964
  22. Sakata, Y., Ohara, T. and Sugiyama, M. 2007. The history and present state of the grafting of cucurbitaceous vegetables in Japan. Acta Hort. 731:159-170. https://doi.org/10.17660/actahortic.2007.731.22
  23. Schwarz, D., Rouphael, Y., Colla, G. and Venema, J. H. 2010. Grafting as a tool to improve tolerance of vegetables to abiotic stresses: Thermal stress, water stress and organic pollutants. Sci. Hortic. 127:162-171. https://doi.org/10.1016/j.scienta.2010.09.016
  24. Scott, J. C., Gordon, T. R., Shaw, D. V. and Koike, S. T. 2010. Effect of temperature on severity of Fusarium wilt of lettuce caused by Fusarium oxysporum f. sp. lactucae. Plant Dis. 94:13-17. https://doi.org/10.1094/PDIS-94-1-0013
  25. Turhan, A., Ozmen, N., Kuscu, H., Serbeci, M. S. and Seniz, V. 2012. Influence of rootstocks on yield and fruit characteristics and quality of watermelon. Hortic. Environ. Biotechnol. 53:336-341. https://doi.org/10.1007/s13580-012-0034-2
  26. Yetİsİr, H., Kurt, S., Sari, N. and Tok, F. M. 2007. Rootstock potential of Turkish Lagenaria siceraria germplasm for watermelon: plant growth, graft compatibility, and resistance to Fusarium. Turk. J. Agric. For. 31:381-388.
  27. Yetisir, H., Sari, N. and Yucel, S. 2003. Rootstock resistance to Fusarium wilt and effect on watermelon fruit yield and quality. Phytoparasitica 31:163-169. https://doi.org/10.1007/BF02980786