DOI QR코드

DOI QR Code

Study on the Detoxification of Asbestos-Containing Wastes (ACW) Using SiC Plate

SiC 플레이트를 이용한 석면 함유 폐기물의 무해화 연구

  • Hong, Myung Hwan (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Choi, Hyeok Mok (Korea Comprehensive Plant) ;
  • Joo, So Young (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Lee, Chan Gi (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering) ;
  • Yoon, Jin-Ho (Materials Science and Chemical Engineering Center, Institute for Advanced Engineering)
  • 홍명환 (고등기술연구원 융합소재연구센터) ;
  • 최혁목 (한국종합플랜트) ;
  • 주소영 (고등기술연구원 융합소재연구센터) ;
  • 이찬기 (고등기술연구원 융합소재연구센터) ;
  • 윤진호 (고등기술연구원 융합소재연구센터)
  • Received : 2019.11.27
  • Accepted : 2020.02.05
  • Published : 2020.02.28

Abstract

Even asbestos-containing waste (ACW) are highly harmful to humans, it continues being produced due to the massive disposal of asbestos-containing products. A development of asbestos detoxification and recycling technologies is required. Heat treatment using microwave is the most efficient method for ACW detoxification. However, microwave heat treatment method has the limitation that asbestos does not absorb microwave at room temperature. That is why, in this study, ACW was detoxified by microwave heat treatment adding the ACW between SiC plates, which are inorganic heating elements that absorb microwaves at room temperature. In order to improove the heat transfer, ACW was crushed and pulverized and then heated using microwave. Microwave heat treatment temperature and time variables were adjusted to investigate the detoxification properties according to heat treatment conditions. After heat treatment, treated ACW was analyzed for detoxification properties through crystal structure and microstructure analysis using X-ray diffraction (XRD) and scanning electron microscopy (SEM). Microwave heat treatment method using SiC plate can be heated up to the target temperature within a short time. Finally, complete asbestos detoxification was confirmed from the crystal structure and the microstructure when the microwave heat treatment was performed at 1,200℃ for at over 60 minutes and at 1,300℃ for at over 10 minutes.

최근 인체 유해성이 높은 석면 함유 제품의 다량 폐기로 인해 석면 함유 폐기물(asbestos-containing waste: ACW)이 계속해서 발생하고 있으며, 매립지 부족 등의 이유로 석면 무해화 및 재활용 기술 개발이 요구되고 있다. 마이크로웨이브를 이용한 열처리는 석면 함유 폐기물 무해화에 가장 효율적인 방법이나 석면이 상온에서 마이크로웨이브를 흡수하지 않는 한계점을 가지고 있다. 본 연구에서는 상온에서 마이크로웨이브를 흡수하여 발열하는 무기 발열체인 SiC 플레이트 사이에 석면 함유 폐기물를 위치시킨 상태에서 마이크로웨이브 열처리를 진행하는 방법으로 석면 함유 폐기물를 무해화 하였다. 효율적인 열처리를 위하여 석면 함유 폐기물를 파쇄 및 분쇄 공정을 통해 분말화하여 무해화 열처리 실험을 진행 하였으며, 열처리 조건에 따른 무해화 특성을 파악하기 위하여 마이크로웨이브 열처리 온도와 시간 변수를 조절하였다. 열처리 후 석면 함유 폐기물는 XRD와 SEM을 이용한 결정구조 및 미세구조 분석을 통하여 무해화 특성을 분석 하였다. SiC 플레이트를 적용한 마이크로웨이브 열처리 방법은 단시간 내에 목표 온도까지 가열이 가능하며 최종적으로 1,200℃에서는 60분 이상, 1,300℃에서는 10 분 이상의 마이크로웨이브 열처리를 진행하였을 때 결정구조와 미세구조상에서 석면이 완전히 제거되는 것을 확인하였다.

Keywords

References

  1. Leonelli, C., Veronesi, P., Boccaccini, D. N., et al., 2006 : Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics, J. Hazard. Mater., 135(1-3), pp.149-155. https://doi.org/10.1016/j.jhazmat.2005.11.035
  2. Skinner, H. C. W., 2003 : Mineralogy of asbestos minerals, Indoor Built Environ., 12(6), pp.385-389. https://doi.org/10.1177/1420326X03037003
  3. Donaldson, K., Tran, C. L., 2004 : An introduction to the short-term toxicology of respirable industrial fibres, Mutat. Res. Fundam. Mol. Mech. Mutagen., 553(1-2), pp.5-9. https://doi.org/10.1016/j.mrfmmm.2004.06.011
  4. Kusiorowski, R., Zaremba, T., Piotrowski, J., et al., 2012 : Thermal decomposition of different types of asbestos, J. Therm. Anal. Calorim., 109(2), pp.693-704. https://doi.org/10.1007/s10973-012-2222-9
  5. Gualtieri, A. F., Tartaglia, A., 2000 : Thermal decomposition of asbestos and recycling in traditional ceramics, J. Eur. Ceram. Soc., 20(9), pp.1409-1418. https://doi.org/10.1016/S0955-2219(99)00290-3
  6. Wagner, J. C., Sleggs, C. A., and Marchand, P., 1960 : Diffuse pleural mesothelioma and asbestos exposure in the North Western Cape Province, Occup. Environ. Med., 17(4), pp.260-271. https://doi.org/10.1136/oem.17.4.260
  7. Newhouse, M. L., Thompson, H., 1965 : Mesothelioma of pleura and peritoneum following exposure to asbestos in the London area, Occup. Environ. Med., 22(4), pp.261-269. https://doi.org/10.1136/oem.22.4.261
  8. Selikoff, I. J., Hammond, E. C., 1968 : Environmental epidemiology. 3. Community effects of nonoccupational environmental asbestos exposure, Am. J. Public Health Nations Health, 58(9), pp.1658-1666. https://doi.org/10.2105/AJPH.58.9.1658
  9. Turci, F., Colonna, M., Tomatis, M., et al., 2010 : New detoxification processes for asbestos fibers in the environment, J. Toxicol. Environ. Health, Part A, 73(5-6), pp.368-377. https://doi.org/10.1080/15287390903442678
  10. Werner, A. J., Hochella, M. F., Guthrie, G. D., et al., 1995 : Asbestiform riebeckite (crocidolite) dissolution in the presence of Fe chelators: implications for mineral-induced disease, Am. Mineral., 80(11-12), pp.1093-1103. https://doi.org/10.2138/am-1995-11-1201
  11. Block, J., Petrakis, L., Dolhert, L. E., et al., 2000 : A novel approach for the in-situ chemical elimination of chrysotile from asbestos-containing fireproofing materials, Environ. Sci. Technol., 34(11), pp.2293-2298. https://doi.org/10.1021/es990432d
  12. Gomez, E., Rani, D. A., Cheeseman, C. R., et al., 2009 : Thermal plasma technology for the treatment of wastes: a critical review, J. Hazard. Mater., 161(2-3), pp.614-626. https://doi.org/10.1016/j.jhazmat.2008.04.017
  13. Gualtieri, A. F., Cavenati, C., Zanatto, I., et al., 2008 : The transformation sequence of cement-asbestos slates up to $1200^{\circ}C$ and safe recycling of the reaction product in stoneware tile mixtures, J. Hazard. Mater., 152(2), pp.563-570. https://doi.org/10.1016/j.jhazmat.2007.07.037
  14. Jolicoeur, C., Duchesne, D., 1981 : Infrared and thermogravimetric studies of the thermal degradation of chrysotile asbestos fibers: evidence for matrix effects, Can. J. Chem., 59(10), pp.1521-1526. https://doi.org/10.1139/v81-223
  15. Kashimura, K., Yamaguchi, T., Sato, M., et al., 2014 : Rapid transformation of asbestos into harmless waste by a microwave rotary furnace: application of microwave heating to rubble processing of the 2011 Tohoku earthquake, J. Hazard. Toxic. Radioact. Waste, 19(3), pp.04014041. https://doi.org/10.1061/(ASCE)HZ.2153-5515.0000249
  16. Borderes, A., 2000 : Vitrification of the incineration residues, Verre-Paris Then Versailles-, 6(4), pp.19-21.
  17. Jianmiao, D., Shizong, L., 2005 : Effect of microwave processing on aluminate cement clinkering, J. Wuhan Univ. Technol., Mater. Sci. Ed., 20(2), pp.77-79. https://doi.org/10.1007/BF02838495
  18. Clark, D. E., Sutton, W. H., 1996 : Microwave processing of materials, Annu. Rev. Mater. Sci., 26(1), pp.299-331. https://doi.org/10.1146/annurev.ms.26.080196.001503
  19. Kozawa, T., Onda, A., Yanagisawa, K., et al., 2010 : Thermal decomposition of chrysotile-containing wastes in a water vapor atmosphere, J. Ceram. Soc. Jpn., 118(1384), pp. 1199-1201. https://doi.org/10.2109/jcersj2.118.1199