DOI QR코드

DOI QR Code

The effect of whole-body cryotherapy intervention after an exercise on MVIC and ROM of EIMD

운동 후 극저온 냉각치료 적용이 운동유발성 근육 손상의 최대등척성근력과 관절가동범위에 미치는 효과

  • 신성필 (한려대학교 보건대학원 물리치료학과) ;
  • 손경현 (한려대학교 물리치료학과) ;
  • 전재근 (한려대학교 물리치료학과)
  • Received : 2020.10.23
  • Accepted : 2020.12.17
  • Published : 2020.12.31

Abstract

Background: The purpose of this study was to investigate the effects of WBC (whole-body cryotherapy)on the MVIC (maximal voluntary isometric contraction)and active ROM (range of motion) recovery of after EIMD (exercise-induced muscle injury). Design: Randomized Controlled Trial. Methods: Thirty subjects who are student in their 20s at a university participated in this study, these subjects were assigned into three groups, a control group (n=10), experiment group I(n=10), and experiment group II (n=10). The subjects in the experimental group II were intervened by WBC (-130℃, 3 minutes) before induced EIMD, the experimental group were intervened by WBC (-130℃, 3 minutes) after induced EIMD, and the control group weren't by any intervened after induced EIMD. Results: First, In the comparison of the MVIC, there were significant variations with the lapse the time in three groups (p<.001) and there was a significant interaction of time and group (p<.001). In the among group comparison, the MVIC of experimental group II was significantly larger than those of other groups (p<.001). Second, In the comparison of the active extension angle, there were significant variations with the lapse the time in three groups (p<.001) and there was a significant interaction of time and group (p<.001). In the among group comparison, the active extension angle of experimental group II was significantly smaller than those of other groups (p<.001). Third, In the comparison of the active flexion angle, there were significant variations with the lapse the time in three groups (p<.01) and there was a significant interaction of time and group (p<.001). In the among group comparison, the active flexion angle of experimental group II was significantly larger than those of other groups (p<.05). Conclusion: The above results revealed that the WBC intervention after an exercise had a positive effect of muscle function after EIMD. Therefore we can consider the WBC as a considerable intervention method to prevent or reduce an exercise injury.

Keywords

References

  1. 강태웅, 박정배. 인위적 지연성 근통증 유발 후 저온침수 스트레칭이 라이프케어를 위한 근통증 지표 및 운동기능에 미치는 영향. 한국엔터테인먼트산업학회논문지 . 2008;12(8):317-26.
  2. 김근조, 이규리, 정병옥, 등. 자연치유와 경피신경전기자극치료, 그리고 냉치료가 지연성근육통이 유발된 위팔두갈래근의 통증과 근력 및 근활성도에 미치는 영향. 한국산학기술학회 논문지 . 2009;10(12):3902-9.
  3. 김덕조, 최원재, 손경현. 고압산소치료가 지연성근육통의 통증, 관절운동범위 및 근피로 회복에 미치는 영향. 대한물리치료과학회지 2019;26(2):1-60.
  4. 김동훈, 김경훈. 넙다리네갈래근 근 피로 유발 후 키네시오 테이핑 적용이 근력과 균형에 미치는 즉각적 효과. 대한물리치료과학회지 2020;27(1):43-50. https://doi.org/10.26862/jkpts.2020.06.27.1.43
  5. 김은숙, 김미화, 조유미, 등. 원심성 운동 전 진동 훈련이 하퇴근육의 지연성 근통증에 미치는 영향. 한국산학기술학회논문지 2011;12(12):5789-96. https://doi.org/10.5762/KAIS.2011.12.12.5789
  6. 김준. 최대하 운동 전 크라이오테라피가 엘리트 태권도 선수들의 혈중 피로물질 및 근 손상지표에 미치는 영향[석사학위논문]. 고려대학교 세종캠퍼스; 2020.
  7. 송현호, 김주영, 이철현, 등. 운동유발성 근육 손상 후 진동운동 적용이 근육 손상 지표에 미치는 영향. 코칭능력개발지 2011;13(1):179-88.
  8. 오세민, 전재근, 유병국, 등. 운동유발성 근육손상 전 맥동초음파 적용이 통증과 근피로대사산물에 미치는 효과. 한국엔터테인먼트산업학회논문지 2016;10(5):81-8.
  9. 이만균, 엄지수, 성순창, 등. 냉치료가 등속성 수축 후의 지연성 근통증 관련 변인과 체력에 미치는 영향. 한국체육학회지 2008;47(5):373-83.
  10. 이성진, 오환희, 채지수, 등. 치료적 마사지와 맥켄지 운동이 만성 경부통 환자의 통증과 관절가동범위에 미치는 영향: 단일사례연구. 대한물리치료과학회지 2017;24(2):61-70. https://doi.org/10.26862/jkpts.2017.09.24.2.61
  11. 이수영. 유지-이완 주동근 수축기법과 경피신경전기자극의 지연성 근육통 치료 효과[박사학위논문]. 연세대학교; 2006.
  12. 이영신, 배세현. 한냉과 온열의 적용 시간과 전달 방식이 장딴지근의 근 활성도에 미치는 영향. 대한물리의학회지 2017;12(2):1-8. https://doi.org/10.13066/kspm.2017.12.2.1
  13. 최기선. 4주간의 웨이트트레이닝이 근력향상 및 혈중 근손상 지표 변화에 미치는 영향[석사학위논문]. 연세대학교; 2008.
  14. Baroni BM, Leal Junior EC, De Marchi T, et al. Low level laser therapy before eccentric exercise reduces muscle damage markers in humans. Eur J Appl Physiol 2010;110(4):789-96. https://doi.org/10.1007/s00421-010-1562-z
  15. Banfi G, Lombardi G, Colombini A, et al. Whole-body cryotherapy in athletes. Sports Med 2010;40(6):509-17. https://doi.org/10.2165/11531940-000000000-00000
  16. Blonna D, Zarkadas PC, Fitzsimmons JS, et al. Accuracy and inter-observer reliability of visual estimation compared to clinical goniometry of the elbow. Knee Surg Sports Traumatol Arthrosc 2012;20(7):1378-85. https://doi.org/10.1007/s00167-011-1720-9
  17. Bouzigon R, Grappe F, Ravier G, et al. Whole- and partial-body cryostimulation/cryotherapy: Current technologies and practical applications. J Therm Biol 2016;61:67-81. https://doi.org/10.1016/j.jtherbio.2016.08.009
  18. Burke DG, MacNeil SA, Holt LE, et al. The effect of hot or cold water immersion on isometric strength training. J Strength Cond Res 2000;14(1):21-25. https://doi.org/10.1519/1533-4287(2000)014<0021:TEOHOC>2.0.CO;2
  19. Brancaccio P, Lippi G, Maffulli N. Biochemical markers of muscular damage. Clin Chem Lab Med 2010;48(6):757-67. https://doi.org/10.1515/CCLM.2010.179
  20. Byrne C, Eston RG, Edwards RH. Characteristics of isometric and dynamic strength loss following eccentric exercise-induced muscle damage. Scand J Med Sci Sports. 2001;11(3):134-40. https://doi.org/10.1046/j.1524-4725.2001.110302.x
  21. Chesterton LS, Foster NE, Ross L. Skin temperature response to cryotherapy. Arch Phys Med Rehabil 2002;83(4):543-9. https://doi.org/10.1053/apmr.2002.30926
  22. Cheung K, Hume P, Maxwell L. Delayed onset muscle soreness : treatment strategies and performance factors. Sports Med 2003;33(2):145-64. https://doi.org/10.2165/00007256-200333020-00005
  23. Cleak MJ, Eston RG. Muscle soreness, swelling, stiffness and strength loss after intense eccentric exercise. Br J Sports Med 1992;26(4):267-72. https://doi.org/10.1136/bjsm.26.4.267
  24. Costello JT, Baker PR, Minett GM, et al. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults. Cochrane Database Syst Rev 2015;(9):CD010789.
  25. Eston R, Peters D. Effects of cold water immersion on the symptoms of exercise-induced muscle damage. J Sports Sci 1999;17(3):231-8. https://doi.org/10.1080/026404199366136
  26. Fonda B, Sarabon N. Effects of whole-body cryotherapy on recovery after hamstring damaging exercise: a crossover study. Scand J Med Sci Sports 2013;23(5):e270-8. https://doi.org/10.1111/sms.12074
  27. Friden J, Seger J, Ekblom B. Sublethal muscle fibre injuries after high-tension anaerobic exercise. Eur J Appl Physiol Occup Physiol 1988;57(3):360-8. https://doi.org/10.1007/BF00635996
  28. Gladden LB. Lactate metabolism: a new paradigm for the third millennium. J Physiol 2004;558(Pt 1):5-30. https://doi.org/10.1113/jphysiol.2003.058701
  29. Hammouda O, Chtourou H, Chahed H, et al. Diurnal variations of plasma homocysteine, total antioxidant status, and biological markers of muscle injury during repeated sprint: effect on performance and muscle fatigue--a pilot study. Chronobiol Int 2011;28(10):958-67. https://doi.org/10.3109/07420528.2011.613683
  30. Hausswirth C, Louis J, Bieuzen F, et al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS One 2011;6(12):e27749. https://doi.org/10.1371/journal.pone.0027749
  31. Hilbert JE, Sforzo GA, Swensen T. The effects of massage on delayed onset muscle soreness. Br J Sports Med 2003;37(1):72-5. https://doi.org/10.1136/bjsm.37.1.72
  32. Howatson G, Goodall S, van Someren KA. The influence of cold water immersions on adaptation following a single bout of damaging exercise. Eur J Appl Physiol 2009;105(4):615-21. https://doi.org/10.1007/s00421-008-0941-1
  33. Hopkins JT, Stencil R. Ankle cryotherapy facilitates soleus function. J Orthop Sports Phys Ther 2002;32(12):622-7. https://doi.org/10.2519/jospt.2002.32.12.622
  34. Howatson G, van Someren KA. The prevention and treatment of exercise-induced muscle damage. Sports Med 2008;38(6):483-503. https://doi.org/10.2165/00007256-200838060-00004
  35. Lehmann JF, Warren CG, Scham SM. Therapeutic heat and cold. Clin Orthop Relat Res 1974;(99):207-45.
  36. Macedo DV, Lazarim FL, Catanho da Silva FO, et al. Is lactate production related to muscular fatigue? A pedagogical proposition using empirical facts. Adv Physiol Educ 2009;33(4):302-7. https://doi.org/10.1152/advan.00039.2009
  37. McAlindon TE, LaValley MP, Gulin JP, et al. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA 2000;283(11):1469-75. https://doi.org/10.1001/jama.283.11.1469
  38. Miller PC, Bailey SP, Barnes ME, et al. The effects of protease supplementation on skeletal muscle function and DOMS following downhill running. J Sports Sci 2004;22(4):365-72. https://doi.org/10.1080/02640410310001641584
  39. Nalbandian M, Takeda M. Lactate as a Signaling Molecule That Regulates Exercise-Induced Adaptations. Biology (Basel) 2016;5(4):38. https://doi.org/10.3390/biology5040038
  40. Nemet D, Meckel Y, Bar-Sela S, et al. Effect of local cold-pack application on systemic anabolic and inflammatory response to sprint-interval training: a prospective comparative trial. Eur J Appl Physiol 2009;107(4):411-7. https://doi.org/10.1007/s00421-009-1138-y
  41. Nosaka K, Newton M. Concentric or eccentric training effect on eccentric exercise-induced muscle damage. Med Sci Sports Exerc 2002;34(1):63-9. https://doi.org/10.1097/00005768-200201000-00011
  42. Pietrosimone BG, Ingersoll CD. Focal knee joint cooling increases the quadriceps central activation ratio. J Sports Sci 2009;27(8):873-9. https://doi.org/10.1080/02640410902929374
  43. Pournot H, Bieuzen F, Louis J, et al. Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One 2011;6(7):e22748. https://doi.org/10.1371/journal.pone.0022748
  44. Proske U. Muscle tenderness from exercise: mechanisms? J Physiol 2005;564(Pt 1):1. https://doi.org/10.1113/jphysiol.2005.085514
  45. Proske U, Allen TJ. Damage to skeletal muscle from eccentric exercise. Exerc Sport Sci Rev 2005;33(2):98-104. https://doi.org/10.1097/00003677-200504000-00007
  46. Proske U, Weerakkody NS, Percival P, et al. Force-matching errors after eccentric exercise attributed to muscle soreness. Clin Exp Pharmacol Physiol 2003;30(8):576-9. https://doi.org/10.1046/j.1440-1681.2003.03880.x
  47. Rivera J, Tercero MJ, Salas JS, et al. The effect of cryotherapy on fibromyalgia: a randomised clinical trial carried out in a cryosauna cabin. Rheumatol Int 2018;38(12):2243-2250. https://doi.org/10.1007/s00296-018-4176-0
  48. Theofilidis G, Bogdanis GC, Koutedakis Y, et al. Monitoring Exercise-Induced Muscle Fatigue and Adaptations: Making Sense of Popular or Emerging Indices and Biomarkers. Sports (Basel) 2018;6(4):153. https://doi.org/10.3390/sports6040153
  49. Turner TS, Tucker KJ, Rogasch NC, et al. Impaired neuromuscular function during isometric, shortening, and lengthening contractions after exercise-induced damage to elbow flexor muscles. J Appl Physiol 2008;105(2):502-9. https://doi.org/10.1152/japplphysiol.90421.2008
  50. Vickers AJ, Fisher P, Smith C, et al. Homoeopathy for delayed onset muscle soreness: a randomised double blind placebo controlled trial. Br J Sports Med 1997;31(4):304-7. https://doi.org/10.1136/bjsm.31.4.304
  51. Wan JJ, Qin Z, Wang PY, et al. Muscle fatigue: general understanding and treatment. Exp Mol Med 2017;49(10):e384. https://doi.org/10.1038/emm.2017.194
  52. Warburton DE, Nicol CW, Bredin SS. Health benefits of physical activity: the evidence. CMAJ 2006;174(6):801-9. https://doi.org/10.1503/cmaj.051351
  53. Warren GL, Summan M, Gao X, et al. Mechanisms of skeletal muscle injury and repair revealed by gene expression studies in mouse models. J Physiol 2007;582(Pt 2):825-41. https://doi.org/10.1113/jphysiol.2007.132373
  54. Wilson HD, Toepfer VE, Senapati AK, et al. Hyperbaric oxygen treatment is comparable to acetylsalicylic acid treatment in an animal model of arthritis. J Pain 2007;8(12):924-30. https://doi.org/10.1016/j.jpain.2007.06.005