DOI QR코드

DOI QR Code

Advanced oxidation technologies for the treatment of nonbiodegradable industrial wastewater

난분해성 산업폐수 처리를 위한 고도산화기술

  • Kim, Min Sik (School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University) ;
  • Lee, Ki-Myeong (School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University) ;
  • Lee, Changha (School of Chemical and Biological Engineering, Institute of Chemical Process (ICP), Institute of Engineering Research, Seoul National University)
  • 김민식 (서울대학교 화학생물공학부, 화학공정신기술연구소) ;
  • 이기명 (서울대학교 화학생물공학부, 화학공정신기술연구소) ;
  • 이창하 (서울대학교 화학생물공학부, 화학공정신기술연구소)
  • Received : 2020.09.16
  • Accepted : 2020.11.18
  • Published : 2020.12.15

Abstract

Industrial wastewater often contains a number of recalcitrant organic contaminants. These contaminants are hardly degradable by biological wastewater treatment processes, which requires a more powerful treatment method based on chemical oxidation. Advanced oxidation technology (AOT) has been extensively studied for the treatment of nonbiodegradable organics in water and wastewater. Among different AOTs developed up to date, ozonation and the Fenton process are the representative technologies that widely used in the field. Based on the traditional ozonation and the Fenton process, several modified processes have been also developed to accelerate the production of reactive radicals. This article reviews the chemistry of ozonation and the Fenton process as well as the cases of application of these two AOTs to industrial wastewater treatment. In addition, research needs to improve the cost efficiency of ozonation and the Fenton process were discussed.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 상하수도 혁신 기술개발사업(과제번호: 2019002710003)의 지원을 받아 연구되었습니다.

References

  1. Adams, C.D., Fusco, F., and Kanzelmeyer, T. (1995). Ozone, hydrogen peroxide/ozone and UV/ozone treatment of chromium- and copper-complex dyes: Decolorization and metal release, Ozone Sci. Eng., 17(2), 149-162. https://doi.org/10.1080/01919519508547543
  2. Amor, C., Marchao, L., Lucas, M.S., Peres, J.A. (2019). Application of advanced oxidation processes for the treatment of recalcitrant agro-industrial wastewater: A review, Water, 11(2), 205. https://doi.org/10.3390/w11020205
  3. Babu, B.R., Meera, K.S., Venkatesan, P., and Sunandha, D. (2010). Removal of fatty acids from palm oil effluent by combined electro-fenton and biological oxidation process, Water Air Soil Pollut., 211(1-4), 203-210. https://doi.org/10.1007/s11270-009-0292-5
  4. Baig, S. and Liechti, P.A. (2001). Ozone treatment for biorefractory COD removal, Water Sci. Technol., 43(2), 197-204. https://doi.org/10.2166/wst.2001.0090
  5. Bailey, P.S. (1982). Ozonation in Organic Chemistry Volume II Nonolefinic Compounds. Academic Press Inc., New York.
  6. Barbusinski, K. (2005). Toxicity of industrial wastewater treated by Fenton's reagent, Pol. J. Environ. Stud., 14(1), 11-16.
  7. Bard, A.J., Parsons, R., and Jordan, J. (1985). Standard Potentials in Aqueous Solution. Marcel Dekker Inc., New York and Basel.
  8. Barder, H. and Hoigne, J. (1981). Determination of ozone in water by the indigo method, Water Res., 15(4), 449-456. https://doi.org/10.1016/0043-1354(81)90054-3
  9. Bayar, S., Massara, T.M., Boncukcuoglu, R., Komesli, O.T., Malamis, S., and Katsou, E. (2018). Advanced treatment of industrial wastewater from pistachio processing by Fenton process, Desalin. Water Treat., 112, 106-111. https://doi.org/10.5004/dwt.2018.22197
  10. Bilinska, L., Blus, K., Gmurek, M., Ledakowicz, S. (2019). Coupling of electrocoagulation and ozone treatment for textile wastewater reuse, Chem. Eng. J., 358, 992-1001. https://doi.org/10.1016/j.cej.2018.10.093
  11. Boonrattanakij, N., Lu, M.C., and Anotai, J. (2011). Iron crystallization in a fluidized-bed Fenton process, Water Res., 45(10), 3255-3262. https://doi.org/10.1016/j.watres.2011.03.045
  12. Boopathy, R., and Das, T. (2018). New approach of integrated advanced oxidation processes for the treatment of lube oil processing wastewater, Arab. J. Sci. Eng., 43(11), 6229-6236. https://doi.org/10.1007/s13369-018-3417-6
  13. Brillas, E., Sires, I., and Oturan, M.A. (2009). Electro-Fenton process and related electrochemical technologies based on Fenton's reaction chemistry, Chem. Rev., 109(12), 6570-6631. https://doi.org/10.1021/cr900136g
  14. Buffle, M.O. and von Gunten, U. (2006). Phenols and amine induced HO generation during the initial phase of natural water ozonation, Environ. Sci. Technol., 40(9), 3057-3063. https://doi.org/10.1021/es052020c
  15. Buehler, R.E., Staehelin, J., and Hoigne, J. (1984). Ozone decomposition in water studied by pulse radiolysis. 1. HO2/O2 - and HO3/O3 - as intermediates, J. Phys. Chem. 88(12), 2560-2564. https://doi.org/10.1021/j150656a026
  16. Criegee, R. (1975). Mechanism of ozonolysis, Angew. Chem., Int. Ed. Engl., 14(11), 745-752. https://doi.org/10.1002/anie.197507451
  17. Chachou, L., Gueraini, Y., Bouhalouane, Y., Poncin, S., Li, H.Z., and Bensadok, K. (2015). Application of the electro-Fenton process for cutting fluid mineralization, Environ. Technol., 36(15), 1924-1932. https://doi.org/10.1080/09593330.2015.1016120
  18. Chen, M., Ren, H., Ding, L., and Gao, B. (2015). Effect of different carriers and operating parameters on degradation of flax wastewater by fluidized-bed Fenton process, Water Sci. Technol., 71(12), 1760-1767. https://doi.org/10.2166/wst.2015.147
  19. Daghrir, R., Drogui, P., and Robert, D. (2013). Modified TiO2 for environmental photocatalytic applications: a review, 52(10), 3581-3599. https://doi.org/10.1021/ie303468t
  20. Eisenhauer, H.R. (1964). Oxidation of phenolic wastes, J. Water Pollut. Control. Fed., 36(9), 1116-1128.
  21. Elovitz, M.S. and von Gunten, U. (1999). Hydroxyl radical/ozone ratios during ozonation processes. I. The Rct concept, Ozone Sci. Eng., 21(3), 239-260. https://doi.org/10.1080/01919519908547239
  22. Ershov, B.G. and Morozov, P.A. (2009). The kinetics of ozone decomposition in water, the influence of pH and temperature, Russ. J. Phys. Chem. A, 83(8), 1295-1299. https://doi.org/10.1134/S0036024409080093
  23. Fenton, H.J.H. (1894). LXXIII.-Oxidation of tartaric acid in presence of iron, J. Chem. Soc. Trans., 65, 899-910. https://doi.org/10.1039/CT8946500899
  24. Garcia-Segura, S., Bellotindos, L.M., Huang, Y.H., Brillas, E., and Lu, M.C. (2016). Fluidized-bed Fenton process as alternative wastewater treatment technology-A review, J. Taiwan Inst. Chem. Eng., 67, 211-225. https://doi.org/10.1016/j.jtice.2016.07.021
  25. Ghanbari, F., and Moradi, M. (2015). A comparative study of electrocoagulation, electrochemical Fenton, electroFenton and peroxi-coagulation for decolorization of real textile wastewater: electrical energy consumption and biodegradability improvement, J. Environ. Chem. Eng., 3(1), 499-506. https://doi.org/10.1016/j.jece.2014.12.018
  26. Godini, K., Azarian, G., Rahmani, A.R., and Zolghadrnasab, H. (2013). Treatment of waste sludge: a comparison between anodic oxidation and electro-Fenton processes, J. Res. Health. Sci., 13(2), 188-193.
  27. Gahr, F., Hermanutz, F., and Oppermann, W. (1994). Ozonation - An important technique to comply with new german laws for textile wastewater treatment, Water Sci. Technol., 30(3), 255-263. https://doi.org/10.2166/wst.1994.0115
  28. Gu, Z., Wang, Y., Feng, K., and Zhang, A. (2019). A comparative study of dinitrodiazophenol industrial wastewater treatment: Ozone/hydrogen peroxide versus microwave/persulfate, Process Saf. Environ., 130, 39-47. https://doi.org/10.1016/j.psep.2019.07.019
  29. Gulyas, H., von Bismarck, R., and Hemmerling, L. (1995). Treatment of industrial wastewaters with ozone/ hydrogen peroxide, Water Sci. Technol., 32(7), 127-134. https://doi.org/10.1016/0273-1223(96)00056-X
  30. Gunes, E., Cifci, D.I., and Celik, S.O. (2018). Comparison of Fenton process and adsorption method for treatment of industrial container and drum cleaning industry wastewater, Environ. Technol., 39(7), 824-830. https://doi.org/10.1080/09593330.2017.1311948
  31. He, D., Guan, X., Ma, J., and Yu, M. (2009). Influence of different nominal molecular weight fractions of humic acids on phenol oxidation by permanganate, Environ. Sci. Technol., 43(21), 8332-8337. https://doi.org/10.1021/es901700m
  32. Ikehata, K. and El-Din, M.G. (2005). Aqueous pesticide degradation by ozonation and ozone-based advanced oxidation processes: A review (Part I), Ozone Sci. Eng., 27(2), 83-114. https://doi.org/10.1080/01919510590925220
  33. Ingles, D.L. (1972). Studies of oxidation by Fenton's reagent using redox titration. I. Oxidation of some organic compounds, Aust. J. Chem., 25(1), 87-95. https://doi.org/10.1071/CH9720087
  34. Perkowski, J., Kos, L., and Ledakowicz, S. (1996). Application of ozone in textile wastewater treatment, Ozone Sci. Eng., 18(1), 73-85. https://doi.org/10.1080/01919519608547342
  35. Joss, A., Zabczynski, S., Gobel, A., Hoffmann, B., Loffler, D., McArdell, C.S., Ternes, T.A., Thomsen, A., and Siegrist, H. (2006). Biological degradation of pharmaceuticals in municipal wastewater treatment: Proposing a classification scheme, Water Res., 40(8), 1686-1696. https://doi.org/10.1016/j.watres.2006.02.014
  36. Karami, M.A., Amin, M.M., Nourmoradi, H., Sadani, M., Teimouri, F., Bina, B. (2016). Degradation of reactive red 198 from aqueous solutions by advanced oxidation process: O3, O3/H2O2, and persulfate, Int. J. Environ. Health Eng., 5, 26. https://doi.org/10.4103/2277-9183.196669
  37. Khadhraoui, M., Trabelsi, H., Ksibi, N., Bouguerra, S., and Elleuch, B. (2009). Discoloration and detoxicification of a Congo red dye solution by means of ozone treatment for a possible water reuse, J. Hazard. Mater., 161(2-3), 974-981. https://doi.org/10.1016/j.jhazmat.2008.04.060
  38. Kim, J., Lee, C.W., and Choi, W. (2010). Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light, Environ. Sci. Technol., 44(17), 6849-6854. https://doi.org/10.1021/es101981r
  39. Kim, M.S., Cha, D., Lee, K.M., Lee, H.J., Kim, T., and Lee, C. (2020). Modeling of ozone decomposition, oxidant exposure, and the abatement of micropollutants during ozonation processes, Water Res., 169, 115230. https://doi.org/10.1016/j.watres.2019.115230
  40. Koppenol, W.H., Stanbury, D.M., and Bounds, P.L. (2010). Electrode potentials of partially reduced oxygen species, from dioxygen to water, Free Radical Bio. Med., 49(3), 317-322. https://doi.org/10.1016/j.freeradbiomed.2010.04.011
  41. Lee, M., Zimmermann-Steffens, S.G., Arey, J.S., Fenner, K., and von Gunten, U. (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: the role of delocalized and localized molecular orbitals, Environ. Sci. Technol., 49(16), 9925-9935. https://doi.org/10.1021/acs.est.5b00902
  42. Lee, Y. and von Gunten, U. (2012). Quantitative structureactivity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment, Water Res., 46(19), 6177-6195. https://doi.org/10.1016/j.watres.2012.06.006
  43. Lee, Y. and von Gunten, U. (2016). Advances in predicting organic contaminant abatement during ozonation of municipal wastewater effluent: reaction kinetics, transformation products, and changes of biological effects, Environ. Sci.: Water Res. Technol., 2, 421-442. https://doi.org/10.1039/C6EW00025H
  44. Li, M., Li, W., Wen, D., Bolton, J.R., Blatchley, E.R., and Qiang, Z. (2019). Micropollutant degradation by the UV/H2O2 process: kinetic comparison among various radiation sources, Environ. Sci. Technol., 53(9), 5241-5248. https://doi.org/10.1021/acs.est.8b06557
  45. Lin, S.H. and Lo, C.C. (1997). Fenton process for treatment of desizing wastewater, Water Res., 31(8), 2050-2056. https://doi.org/10.1016/S0043-1354(97)00024-9
  46. Liu, J., Li, J., Mei, R., Wang, F., and Sellamuthu, B. (2014). Treatment of recalcitrant organic silicone wastewater by fluidized-bed Fenton process, Sep. Purif. Technol., 132, 16-22. https://doi.org/10.1016/j.seppur.2014.04.050
  47. Lucas, M.S., Peres, J.A., and Puma, G.L. (2010). Treatment of winery wastewater by ozone-based advanced oxidation processes (O3, O3/UV and O3/UV/H2O2) in a pilot-scale bubble column reactor and process economics, Sep. Purif. Technol., 72(3), 235-241. https://doi.org/10.1016/j.seppur.2010.01.016
  48. Maamar, M., Naimi, I., Mkadem, Y., Souissi, N., and Bellakhal, N. (2015). Electrochemical oxidation of bromothymol blue: Application to textile industrial wastewater treatment, J. Adv. Oxid. Technol., 18(1), 105-113. https://doi.org/10.1515/jaots-2015-0113
  49. Martinez, N.S.S., Fernandez, J.F., Segura, X.F., and Ferrer, A.S. (2003). Pre-oxidation of an extremely polluted industrial wastewater by the Fenton's reagent, J. Hazard. Mater., 101(3), 315-322. https://doi.org/10.1016/S0304-3894(03)00207-3
  50. Messele, S.A., Bengoa, C., Stuber, F.E., Giralt, J., Fortuny, A., Fabregat, A., and Font, J. (2019). Enhanced degradation of phenol by a Fenton-like system (Fe/EDTA/H2O2) at circumneutral pH, Catalysts, 9(5), 474 https://doi.org/10.3390/catal9050474
  51. Minakata, D., Li, K. and Westerhoff, J.C. (2009). Development of a group contribution method to predict aqueous phase hydroxyl radical (HO·) reaction rate constants, Environ. Sci. Technol., 43(16), 6220-6227. https://doi.org/10.1021/es900956c
  52. Neta, P. and Dorfman, L.M. (1968). Pulse radiolysis studies. XIII. Rate constants for the reaction of hydroxyl radicals with aromatic compounds in aqueous solutions, Adv. Chem., 81, 222-230. https://doi.org/10.1021/ba-1968-0081.ch015
  53. Peng, R., Yu, P., and Luo, Y. (2017). Coke plant wastewater posttreatment by Fenton and electro-Fenton processes, Environ. Eng. Sci., 34(2), 89-95. https://doi.org/10.1089/ees.2015.0520
  54. Qi, L., Wang, X., Xu, Q. (2011). Coupling of biological methods with membrane filtration using ozone as pre-treatment for water reuse, Desalination, 270(1-3), 264-268. https://doi.org/10.1016/j.desal.2010.11.054
  55. Rice, R.G., Robson, C.M., Miller, G.W., and Hill, A.G. (1981). Uses of ozone in drinking water treatment, J. Am. Water Works Ass., 73(1), 44-57. https://doi.org/10.1002/j.1551-8833.1981.tb04637.x
  56. Schwarzenbach, R.P., Escher, B.I., Fenner, K., Hofstetter, T.B., Johnson, C.A., von Gunten, U., and Wehrli, B. (2006). The challenge of micropollutants in aqueous systems, Science, 313(5790), 1072-1077. https://doi.org/10.1126/science.1127291
  57. Siddiqui, M., Amy, G., Ozekin, and K., Westerhoff, P. (1994). Empirically and theoretically-based models for predicting brominated ozonated by-products, Ozone Sci. Eng., 16(2), 157-178. https://doi.org/10.1080/01919519408552419
  58. Sohn, J., Amy, G., Cho, J., Lee, Y., and Yoon, Y. (2004). Disinfection decay and disinfection by-products formation model development: chlorination and ozonation by-products, Water Res. 38(10), 2461-2478. https://doi.org/10.1016/j.watres.2004.03.009
  59. Staehelin, J. and Hoigne, J. (1982). Decomposition of ozone in water: Rate of initiation by hydroxide ions and hydrogen peroxide, Environ. Sci. Technol., 16(10), 676-681. https://doi.org/10.1021/es00104a009
  60. Staehelin, J. and Hoigne, J. (1985). Decomposition of ozone in the presence of organic solutes acting as promoters and inhibitors of radical chain reactions, Environ. Sci. Technol., 19(12), 1206-1213. https://doi.org/10.1021/es00142a012
  61. Su, C.C., Pukdee-Asa, M., Ratanatamskul, C., and Lu, M.C. (2011). Effect of operating parameters on the decolorization and oxidation of textile wastewater by the fluidized-bed Fenton process, Sep. Purif. Technol., 83, 100-105. https://doi.org/10.1016/j.seppur.2011.09.021
  62. Swietlik, J. and Sikorska, E. (2004). Application of fluorescence spectroscopy in the studies of natural organic matter fractions reactivity with chlorine dioxide and ozone, Water Res., 38(17), 3791-3799. https://doi.org/10.1016/j.watres.2004.06.010
  63. Trizaoui, C. and Grima, N. (2011). Kinetics of the ozone oxidation of Reactive Orange 16 azo-dye in aqueous solution, Chem. Eng. J., 173(2), 463-473. https://doi.org/10.1016/j.cej.2011.08.014
  64. Ulucan, K. and Kurt, U. (2015). Comparative study of electrochemical wastewater treatment processes for bilge water as oily wastewater: a kinetic approach, J. Electroanal. Chem., 747, 104-111. https://doi.org/10.1016/j.jelechem.2015.04.005
  65. von Gunten, U. and Hoigne, J. (1994). Bromate formation during ozonation of bromide-containing waters: interaction of ozone and hydroxyl radical reactions, Environ. Sci. Technol., 28(7), 1234-1242. https://doi.org/10.1021/es00056a009
  66. Wols, B.A., Hofman-Caris, C.H.M., Harmsen, D.J.H., and Beerendonk, E.F. (2013). Degradation of 40 selected pharmaceuticals by UV/H2O2, Water Res., 47(15), 5876-5888. https://doi.org/10.1016/j.watres.2013.07.008
  67. Wu, J. and Doan, H. (2005). Disinfection of recycled red-meat-processing wastewater by ozone, J. Chem. Technol. Biotechnol., 80(7), 828-833. https://doi.org/10.1002/jctb.1324
  68. Yan-yang, C., Yi, Q., and Mao-juan, B. (2009). Three advanced oxidation processes for the treatment of the wastewater from acrylonitrile production, Water Sci. Technol., 60(11), 2991-2999. https://doi.org/10.2166/wst.2009.691
  69. Yao, C.C.D. and Haag, W.R. (1991). Rate constants for direct reactions of ozone with several drinking water contaminants, Water Res., 25(7), 761-773. https://doi.org/10.1016/0043-1354(91)90155-J
  70. Zepp, R.G., Faust, B.C., and Hoigne, J. (1992). Hydroxyl radical formation in aqueous reactions (pH 3-8) of iron(II) with hydrogen peroxide: the photo-Fenton reaction, Environ. Sci. Technol., 26(2), 313-319. https://doi.org/10.1021/es00026a011