DOI QR코드

DOI QR Code

Analysis of Reliability of Weather Fields for Typhoon Sanba (1216)

태풍 기상장의 신뢰도 분석: 태풍 산바(1216)

  • Kwon, Kab Keun (Research Institute, HYCERG, Hanyang University, ERICA Campus) ;
  • Jho, Myeong Hwan (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Ryu, Kyong Ho (Department of Civil and Environmental Engineering, Hanyang University) ;
  • Yoon, Sung Bum (Department of Civil and Environmental Engineering, Hanyang University)
  • 권갑근 ((주) HYCERG 부설연구소) ;
  • 조명환 (한양대학교 대학원 건설환경공학과) ;
  • 류경호 (한양대학교 대학원 건설환경공학과) ;
  • 윤성범 (한양대학교 건설환경공학과)
  • Received : 2020.10.07
  • Accepted : 2020.12.09
  • Published : 2020.12.31

Abstract

Numerical simulations of the storm surge and the wave induced by the Typhoon Sanba incident on the south coast of Korea in 2012 are conducted using the JMA-MSM forecast weather field, NCEP-CFSR reanalysis weather field, ECMWF-ERA5 reanalysis weather field, and the pressure and wind fields obtained using the best track information provided by JTWC. The calculated surge heights are compared with the time history observed at harbors along the coasts of Korea. For the waves the calculated significant wave heights are compared with the data measured using the wave buoys and the underwater pressure type wave gauge. As a result the JMA-MSM and the NCEP-CFSR weather fields give the highest reliability. The ECMWF-ERA5 gives in general surge and wave heights weaker than the measured. The ECMWF-ERA5, however, reproduces the best convergence belt formed in front of the typhoon. The weather field obtained using JTWC best track information gives the worst agreement.

2012년 남해안에 내습한 태풍 산바에 의해 발생한 폭풍해일과 파랑을 JMA-MSM 예보기상자료, NCEP-CFSR 재분석 기상자료, ECMWF-ERA5 재분석 기상자료, JTWC의 최적경로를 이용한 기상자료를 이용하여 수치모의하고, 계산된 해일고를 전국 해안의 항만에서 관측된 폭풍해일 시계열 자료와 비교하였으며, 파랑에 대해서는 계산된 유의파고를 해상 부이 및 수압식 파고 관측 자료와 비교하였다. 이 비교를 통해 태풍 산바에 대한 각종 기상장의 신뢰도를 평가하였다. 그 결과 JMA-MSM 기상자료와 NCEP-CFSR 기상자료가 가장 신뢰도가 높았고, ECMWF-ERA5 기상자료는 전반적으로 해일고나 파고의 크기가 작게 나타났으나, 태풍 전면부의 수렴대는 가장 잘 재현하는 것으로 나타났다. JTWC의 최적경로를 이용한 기상자료는 신뢰도가 가장 낮게 나타났다.

Keywords

Acknowledgement

이 논문은 2020년 해양수산부 재원으로 해양수산과학기술진흥원의 지원을 받아 수행된 연구임(안전한 항만구축 및 관리기술개발 사업).

References

  1. Booij, N., Ris, R.C. and Holthuijsen, L.H. (1999). A third-generation wave model for coastal regions, Part I, Model description and validation. J. Geophys. Res., 104(C4), 7649-7666. https://doi.org/10.1029/98JC02622
  2. Hersbach, H. and Coauthors (2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society, 146, 1999-2049. https://doi.org/10.1002/qj.3803
  3. Jeong, W.M. (2017). Private communication.
  4. Kim, G.H., Ryu, K.H. and Yoon, S.B. (2020). Numerical simulation of storm surge and wave due to Typhoon Bolaven of 2012. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 273-283 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.4.273
  5. Komen, G.J., Hasselmann, S. and Hasselmann, K. (1984). On the existence of a fully developed wind sea spectrum. J. Phys. Oceanogr., 14, 1271-1285. https://doi.org/10.1175/1520-0485(1984)014<1271:OTEOAF>2.0.CO;2
  6. Korea Hydrographic and Oceanographic Agency (2012). Oceanic abnormal phenomena report, Vol.3 (in Korean).
  7. Kwon, K.K., Jho, M.H. and Yoon, S.B. (2020). Numerical simulation of storm surge and wave due to Typhoon Kong-Rey of 2018. Journal of Korean Society of Coastal and Ocean Engineers, 32(4), 252-261 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.4.252
  8. Luettich, R., Westerink, J. and Scheffner, N. (1992). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 1. Theory and methodology of ADCIRC-2DDI and ADCIRC-3DL. Vicksburg MS: Coastal Engineering Research Center.
  9. Luettich, R., Westerink, J. and Scheffner, N. (1994). ADCIRC: An advanced three-dimensional circulation model for shelves, coasts, and estuaries. Report 2. User's manual for ADCIRC-2DDI. Vicksburg MS: Coastal Engineering Research Center.
  10. Saha, S. and Coauthors (2010). The NCEP climate forecast system reanalysis. Bull. Amer. Meteor. Soc., 91, 1015-1057. doi: 10.1175/2010BAMS3001.1
  11. Saha, S. and Coauthors (2014). The NCEP climate forecast system Version 2. J. of Climate, 27(6), 2185-2208. doi: http://dx.doi.org/10.1175/JCLI-D-12-00823.1.
  12. Saito, K. and Coauthors (2006). The operational JMA nonhydrostatic meso-scale model. Monthly Weather Review, 134, 1266-1298. https://doi.org/10.1175/MWR3120.1
  13. Suh, S.W. and Kim, H.J. (2012). Typhoon surge simulation on the west coast incorporating asymmetric vortex and wave model on a fine finite element grid. Journal of Korean Society of Coastal and Ocean Engineers, 24(3), 166-178 (in Korean). https://doi.org/10.9765/KSCOE.2012.24.3.166
  14. SWAN team (2016). SWAN user manual (SWAN Cycle III version 41.10A). Delft University of Technology, 12-20.
  15. Yoon, S.B., Jeong, W.M., Jho, M.H. and Ryu, K.H. (2020). Analysis of reliability of weather fields for Typhoon Maemi (0314). Journal of Korean Society of Coastal and Ocean Engineers, 32(5), 351-362 (in Korean). https://doi.org/10.9765/KSCOE.2020.32.5.351