DOI QR코드

DOI QR Code

Review on Oil/Water Separation Membrane Technology

기름/물 분리막 기술에 대한 총설

  • Lee, Byunghee (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University) ;
  • Patel, Rajkumar (Energy and Environmental Science and Engineering (EESE), Integrated Science and Engineering Division (ISED), Underwood International College, Yonsei University)
  • 이병희 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학) ;
  • 라즈쿠마 파텔 (연세대학교 언더우드국제대학 융합과학공학부 에너지환경과학공학)
  • Received : 2020.11.01
  • Accepted : 2020.11.16
  • Published : 2020.12.31

Abstract

Compared to other oil/water separation methods, oil/water separation membranes have low energy costs and higher performance levels. Superhydrophilicity and underwater superoleophobicity are factors that are most vital in developing effective oil/water separation membrane. In addition, antifouling property and biodegradability are also factors that have to be considered in developing the membranes. In this review, studies which have enhanced the oil/water separation efficiency by modifying the chemistry and morphology of the surface of the membrane are discussed.

기름/물 분리막은 다른 분리 기술들에 비해 낮은 에너지 비용과 높은 성능 수준을 갖고 있다. 초친수성과 수중에서 소유성은 효과적인 기름/물 분리막을 개발하는 데 가장 중요한 요인으로 작용한다. 이와 더불어 방오속성과 생분해성도 효과적인 기름/물 분리막을 개발할 때에 고려되는 중요한 요소들이다. 본 리뷰 논문에서는 다양한 화학성분과 형태를 변형시켜 개발된 기름/물 분리막의 특성과 분리 효율을 개선한 연구들을 소개한다.

Keywords

References

  1. J. Zhang, H. Liu, and L. Jiang, "Membrane-based strategy for efficient ionic liquids/water separation assisted by superwettability", Adv. Funct. Mater., 27, 1606544 (2017). https://doi.org/10.1002/adfm.201606544
  2. J. Zhang, L. Liu, Y. Si, J. Yu, and B. Ding, "Electrospun nanofibrous membranes: An effective arsenal for the purification of emulsified oily wastewater", Adv. Funct. Mater., 30, 2002192 (2020). https://doi.org/10.1002/adfm.202002192
  3. X. Lin and J. Hong, "Recent advances in robust superwettable membranes for oil-water separation", Adv. Mater. Interfaces, 6, 1900126 (2019). https://doi.org/10.1002/admi.201900126
  4. X. Lin and J. Hong, "Recent advances in robust superwettable membranes for oil-water separation", Adv. Mater. Interfaces, 6, 1900126 (2019). https://doi.org/10.1002/admi.201900126
  5. X. Yue, Z. Li, T. Zhang, D. Yang, and F. Qiu, "Design and fabrication of superwetting fiber-based membranes for oil/water separation applications", Chem. Eng. J., 364, 292 (2019). https://doi.org/10.1016/j.cej.2019.01.149
  6. R. Zhang, Y. Liu, M. He, Y. Su, and X. Zhao, M. Elimelech, and Z. Jiang, "Antifouling membranes for sustainable water purification: Strategies and mechanisms", Chem. Soc. Rev., 45, 5888 (2016). https://doi.org/10.1039/c5cs00579e
  7. M. Padaki, R. Surya Murali, M. S. Abdullah, N. Misdan, A. Moslehyani, M. A. Kassim, N. Hilal, and A. F. Ismail, "Membrane technology enhancement in oil-water separation: A review", Desalination, 357, 197 (2015). https://doi.org/10.1016/j.desal.2014.11.023
  8. Y. Peng and Z. Guo, "Recent advances in biomimetic thin membranes applied in emulsified oil/water separation", J. Mater. Chem. A, 4, 15749 (2016). https://doi.org/10.1039/C6TA06922C
  9. J. Zhang, F. Zhang, J. Song, L. Liu, Y. Si, J. Yu, and B. Ding, "Electrospun flexible nanofibrous membranes for oil/water separation", J. Mater. Chem. A, 7, 20075 (2019). https://doi.org/10.1039/C9TA07296A
  10. P. C. Oh and R. J. Won, "Studies on preparation and performance of poly(acrylonitrile) nano-composite hollow fiber membrane through the coating of hydrophilic polymers", Membr. J., 29, 140 (2019). https://doi.org/10.14579/MEMBRANE_JOURNAL.2019.29.3.140
  11. W. I. Hye, L. H. Woo, G. H. Jun, and C. K. Yong, "Transmembrane pressure of flat-sheet membrane in emulsion type cutting oil solution for symmetric/asymmetric sinusoidal flux continuous operation mode", Membr. J., 25, 320 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.4.320
  12. O. Choi and C. H. Park, "Fabrication of micro-porous membrane via a solution spreading phase inversion method", Membr. J., 29, 105 (2019). https://doi.org/10.14579/membrane_journal.2019.29.2.105
  13. S. Kim and R. Patel, "Nanocomposite water treatment membranes: Antifouling prospective", Membr. J., 30, 158 (2020). https://doi.org/10.14579/MEMBRANE_JOURNAL.2020.30.3.158
  14. Y. Zhu, D. Wang, L. Jiang, and J. Jin, "Recent progress in developing advanced membranes for emulsified oil/water separation", NPG Asia Mater., 6, e101 (2014). https://doi.org/10.1038/am.2014.23
  15. S. Noamani, S. Niroomand, M. Rastgar, and M. Sadrzadeh, "Carbon-based polymer nanocomposite membranes for oily wastewater treatment", npj Clean Water, 2, 20 (2019). https://doi.org/10.1038/s41545-019-0044-z
  16. A. A. El-Samak, D. Ponnamma, M. K. Hassan, A. Ammar, S. Adham, M. A. A. Al-Maadeed, and A. Karim, "Designing flexible and porous fibrous membranes for oil water separation - A review of recent developments", Polym. Rev., 60, 671 (2020). https://doi.org/10.1080/15583724.2020.1714651
  17. M. H. Abo-Shosha, Z. M. El-Sayed, H. M. Fahmy, and N. A. Ibrahim, "Synthesis of PEG/TDI/F6 adducts and utilization as water/oil repellents and oily stain release finishes for cotton fabric", Polym. Plast. Technol. Eng., 44, 1189 (2005). https://doi.org/10.1081/PTE-200065283
  18. Y. Na, J. Lee, S. H. Lee, P. Kumar, J. H. Kim, and R. Patel, "Removal of heavy metals by polysaccharide: A review", Polym.-Plast. Technol Mat. (2020).
  19. R. Patel, M. Patel, J.-S. Sung, and J. H. Kim, "Preparation and characterization of bioinert amphiphilic P(VDF-co-CTFE)-g-POEM graft copolymer", Polym.-Plast. Technol Mat., 59, 1077 (2020).
  20. S. Saini and B. Kandasubramanian, "Engineered smart textiles and janus microparticles for diverse functional industrial applications", Polym.-Plast. Technol Mat., 58, 1770 (2019).
  21. N. Ali, M. Bilal, A. Khan, F. Ali, and H. M. N. Iqbal, "Design, engineering and analytical perspectives of membrane materials with smart surfaces for efficient oil/water separation", TrAC Trends Anal. Chem., 127, 115902 (2020). https://doi.org/10.1016/j.trac.2020.115902
  22. Y. Zhu, W. Xie, J. Li, T. Xing, and J. Jin, "PH-induced non-fouling membrane for effective separation of oil-in-water emulsion", J. Membr. Sci., 477, 131 (2015). https://doi.org/10.1016/j.memsci.2014.12.026
  23. Y. Zhu, F. Zhang, D. Wang, X. F. Pei, W. Zhang, and J. Jin, "A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency", J. Mater. Chem. A, 1, 5758 (2013). https://doi.org/10.1039/c3ta01598j
  24. F. N. Meng, M. Q. Zhang, K. Ding, T. Zhang, and Y. K. Gong, "Cell membrane mimetic PVDF microfiltration membrane with enhanced antifouling and separation performance for oil/water mixtures", J. Mater. Chem. A, 6, 3231 (2018). https://doi.org/10.1039/C7TA10135J
  25. L. Cheng, D. M. Wang, A. R. Shaikh, L. F. Fang, S. Jeon, D. Saeki, L. Zhang, C. J. Liu, and H. Matsuyama, "Dual superlyophobic aliphatic polyketone membranes for highly efficient emulsified oil-water separation: Performance and mechanism", ACS Appl. Mater. Interfaces, 10, 30860 (2018). https://doi.org/10.1021/acsami.8b09687
  26. K. Guan, L. Zhang, S. Wang, R. Takagi, and H. Matsuyama, "Controlling the formation of porous polyketone membranes via a cross-linkable alginate additive for oil-in-water emulsion separations", J. Membr. Sci., 611, 118362 (2020). https://doi.org/10.1016/j.memsci.2020.118362
  27. K. He, H. Duan, G.Y. Chen, X. Liu, W. Yang, and D. Wang, "Cleaning of oil fouling with water enabled by zwitterionic polyelectrolyte coatings: Overcoming the imperative challenge of oil-water separation membranes", ACS Nano, 9, 9188 (2015). https://doi.org/10.1021/acsnano.5b03791
  28. Y. Hou, C. T. Duan, N. Zhao, H. Zhang, Y. P. Zhao, L. Chen, H. J. Dai, and J. Xu, "A versatile coating approach to fabricate superwetting membranes for separation of water-in-oil emulsions", Chin. J. Polym. Sci. (Engl. Ed.), 34, 1234 (2016). https://doi.org/10.1007/s10118-016-1828-y
  29. J. P. Chaudhary, N. Vadodariya, S. K. Nataraj, and R. Meena, "Chitosan-based aerogel membrane for robust oil-in-water emulsion separation", ACS Appl. Mater. Interfaces, 7, 24957 (2015). https://doi.org/10.1021/acsami.5b08705
  30. Y. Cai, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, "Self-healing and superwettable nanofibrous membranes for efficient separation of oil-in-water emulsions", J. Mater. Chem. A, 7, 1629 (2019). https://doi.org/10.1039/C8TA10254F
  31. Y. Cai, D. Chen, N. Li, Q. Xu, H. Li, J. He, and J. Lu, "Nanofibrous metal-organic framework composite membrane for selective efficient oil/water emulsion separation", J. Membr. Sci., 543, 10 (2017). https://doi.org/10.1016/j.memsci.2017.08.047
  32. H. Li, L. Zhu, J. Zhang, T. Guo, X. Li, W. Xing, and Q. Xue, "High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks", Appl. Surf. Sci., 476, 61 (2019). https://doi.org/10.1016/j.apsusc.2019.01.064
  33. Y. Lin, M. S. Salem, L. Zhang, Q. Shen, A. H. El-shazly, N. Nady, and H. Matsuyama, "Development of janus membrane with controllable asymmetric wettability for highly-efficient oil/water emulsions separation", J. Membr. Sci., 606, 118141 (2020). https://doi.org/10.1016/j.memsci.2020.118141
  34. K. Muthukumar, N. J. Kaleekkal, D. S. Lakshmi, S. Srivastava, and H. Bajaj, "Turning the morphology of PVDF membrane using inorganic clusters for oil/water separation", J. App. Polym. Sci., 10, 47641 (2019).
  35. Y. Zhang, Y. Chen, L. Hou, F. Guo, J. Liu, S. Qiu, Y. Xu, N. Wang, and Y. Zhao, "Pine-branch-like TiO2 nanofibrous membrane for high efficiency strong corrosive emulsion separation", J. Mater. Chem. A, 5, 16134 (2017). https://doi.org/10.1039/C7TA00833C
  36. S. J. Gao, Z. Shi, W. B. Zhang, F. Zhang, and J. Jin, "Photoinduced superwetting single-walled carbon nanotube/TiO2 ultrathin network films for ultrafast separation of oil-in-water emulsions", ACS Nano, 8, 6344 (2014). https://doi.org/10.1021/nn501851a
  37. Y. Jiang, J. Hou, J. Xu, and B. Shan, "Switchable oil/water separation with efficient and robust Janus nanofiber membranes", Carbon, 115, 477 (2017). https://doi.org/10.1016/j.carbon.2017.01.053
  38. P. Raturi, K. Yadav, and J. P. Singh, "ZnO-nanowires-coated smart surface mesh with reversible wettability for efficient on-demand oil/water separation", ACS Appl. Mater. Interfaces, 9, 6007 (2017). https://doi.org/10.1021/acsami.6b14448
  39. Z. Xiong, H. Lin, Y. Zhong, Y. Qin, T. Li, and F. Liu, "Robust superhydrophilic polylactide (PLA) membranes with a TiO2 nano-particle inlaid surface for oil/water separation", J. Mater. Chem. A, 5, 6538 (2017). https://doi.org/10.1039/C6TA11156D
  40. X. Zhang, J. Tian, S. Gao, Z. Zhang, F. Cui, and C. Y. Tang, "In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(arylene ether sulfone) for anti-fouling in emulsified oil/water separation", J. Membr. Sci., 527, 26 (2017). https://doi.org/10.1016/j.memsci.2017.01.002