DOI QR코드

DOI QR Code

Computation of Wake Vortex Behavior Behind Airplanes in Close Formation Flight Using a Fourier-Spectral Method

푸리에-스펙트럴 법을 사용한 근접 편대비행 항공기의 와 거동 계산

  • Ji, Seunghwan (Department of Aeronautical and Mechanical Design Engineering, Korea National University of Transportation) ;
  • Han, Cheolheui (Department of Aeronautical and Mechanical Design Engineering, Korea National University of Transportation)
  • Received : 2019.08.01
  • Accepted : 2019.11.27
  • Published : 2020.01.01

Abstract

Behaviors of wake vortices generated by an aircraft affect the performance and flight stability of flying aircraft in formation flight. In the present study, the trajectories of the wake vortices behind airplanes in close formation flight were computed using a Fourier spectral method. The behavior of wake vortices showed complex patterns depending on the initial circulation and the relative positions between the vortices. In the initial stage, the wake vortex movement was affected by the nascent vortex. When the vortex becomes closer to the other vortex, then a new trajectory is formed. When the viscous effect becomes dominant, the core radius increases. Thus, a new vortex moving near the existing vortex can have strong interaction with each other, resulting in the complicated behavior of wake vortices. In the future, the ground effect on the behavior of the wake vortices during take-off and landing will be studied.

항공기에서 발생한 후류의 거동은 항공기의 성능과 비행안정성에 큰 영향을 미친다. 본 연구에서는 푸리에-스펙트럴법을 사용하여 근접 편대비행을 하고 있는 항공기 날개 후류 거동에 관하여 연구하였다. 초기와의 순환강도, 상대위치 등에 따라 와들의 거동이 복잡한 양상으로 나타났다. 와의 순환강도 값이 큰 경우 와들의 이동이 크게 나타났다. 초기에는 가까이 위치한 와의 영향을 받아 이동하지만 이동하는 과정에서 다른 와와 가깝게 되면 새로운 경로를 형성하였다. 점성이 클수록 와의 반경이 증가하여 와 반경 근처로 새롭게 진입하는 와와 상호작용이 강해진다. 향후 항공기가 이착륙 시에 발생하는 지면 효과를 고려한 후류 거동 해석 연구를 수행하고자 한다.

Keywords

References

  1. Zhang, D., Chen, Y., Dong, X., Liu, Z., and Zhou, Y., "Numerical Aerodynamic Characteristics Analysis of the Close Formation Flight," Mathematical Problems in Engineering, 2018, p. 13. https://doi.org/10.1155/S1024123X0000123X
  2. Vachon, M. J., Ray, R. J., Walsh, K. R., and Ennix, K., "F/A-18 Aircraft Performance Benefits Measured During the Autonomous Formation Flight," AIAA Amospheric Fight Mechanics Conference and Exhibit, Monterey, California, USA, 2002, Paper 4491.
  3. Shen, H., Perkins, N. H., Lin, K. C., and Zarmehr, A., "Energy Saving Formation Flight: A Review of the Past, Present, and Future," International Journal of Innovative Research in Technology and Science, Vol. 4, No. 3, 2016, pp. 35-40.
  4. Ning, S., Flanzer, T., and Kroo, I., "Aerodynamic Performance of Extended Formation Flight," Journal of Aircraft, May-June, 2011, Vol. 48 Issue 3, pp. 855-856. https://doi.org/10.2514/1.C031046
  5. Ning, S., Aircraft Drag Reduction through Extended Formation Flight, PhD Dissertation, Stanford University, 2011.
  6. Bower, G., Flanzer, T., and Kroo, I., "Formation Geometries and Route Optimization for Commercial Formation Flight," 27th AIAA Applied Aerodynamics Conference, 22-25 June 2009, San Antonio, Texas, USA.
  7. Breitsamter, C., "Wake Vortex Characteristics of Transport Aircraft," Progress in Aerospace Sciences, Vol. 47, 2011, pp. 89-134. https://doi.org/10.1016/j.paerosci.2010.09.002
  8. FAA Advisory Circular AC90-23G, Aircraft Wake Turbulence.
  9. Ko, D. H., and Choi, K. Y., "Optimization of Aircraft Landing Problem with Flight Envelope Protection using BADA Information," Proceedings of The Korean Society for Aeronautical and Space Sciences, 2015, pp. 852-855.
  10. Hallock, J. N., and Holzapfer, F., "A Review of Recent Wake Vortex Research for Increasing Airport Capacity," Progress in Aerospace Sciences, Vol. 98, 2018, pp. 27-36. https://doi.org/10.1016/j.paerosci.2018.03.003
  11. Green, G. I., Fluid Vortices, Kluwer Academic Publishers, 1995.
  12. Han, C. H., and Cho, J. S., "Unsteady Trailing Vortex Evolution Behind a Wing in Ground Effect," Journal of Aircraft, Vol. 42, No. 2, 2005.
  13. Pullin, D. I., "The Large-scale Structure of Unsteady Self-similar Rolled-up Vortes Sheets," Journal of Fluid Mechanics, Vol. 88, part 3, 1978, pp. 401-130. https://doi.org/10.1017/S0022112078002189
  14. Rosenhead, L., "The Formation of Vortices from a Surface of Discontinuity," Proceedings of Royal Society of London, A. Vol. 134, No. 823, 1931, pp. 170-192. https://doi.org/10.1098/rspa.1931.0189
  15. Krasny, R., "Computation of Vortex Sheet Roll-up in the Trafftz Plane," Journal of Fluid Mechanics, Vol. 184, 1987, pp. 123-155. https://doi.org/10.1017/S0022112087002830
  16. Hemati, M., "Vortex Merger: A Numerical Investigation," University of California-Los Angeles, USA, 2009.
  17. Park, S. H., Sheen, D. J., Chang, K. S., and Kwag, D. G., "Numerical Analysis on Two-Dimensional Vortex Merger," Journal of Aerospace System Engineering, Vol. 10, No. 1, 2016, pp. 1-7. https://doi.org/10.20910/JASE.2016.10.1.1
  18. Cottet, G. H., Michaux, B., Ossia, S., and Linden, G. V., "A Comparison of Spectral and Vortex Methods in Three-Dimensional Incompressible Flows," Journal of Computational Physics, Vol. 175, 2002, pp. 702-712. https://doi.org/10.1006/jcph.2001.6963
  19. Henshaw, W. D., Kreiss, H.-O., and Reyna, L. G., "On Smallest Scale Estimates and a Comparison of the Vortex Method th the Pseudo-Spectral Method," Lectures in Applied Mathematics, Vol. 28, 1991, pp. 303-325.
  20. Wang, Y., Liu, P., Hu, T., and Qu, Q., "Investigation of Co-rotating Vortex Merger in Ground Proximity," Aerospace Science and Technology, 2016.
  21. Gerz, T., Holzapfer, F., and Darracq, D., "Aircraft Wake Vortices- A position paper-," 2001, http://www.cerfacs.fr/-wakenet/.
  22. Orlandi, P., "Two-dimensional and Threedimensional Direct Numerical Simulation of Co-rotating Vortices," Physics of Fluids, Vol. 19, No. 1, 2007, pp. 1-18. https://doi.org/10.1063/1.861322
  23. Katz, J., and Plotkin, A., Low-Speed Aerodynamics, Cambridge University Press.
  24. Yehoshua, T., and Seifert, A., "Empirical Model for the Evolution of a Vortex-Pair Introduced into a Boundary Layer," Aerospace Lab, 2013, pp. 1-12.
  25. Tophoj, L., and Aref, H., "Instability of Vortex Pair Leapfrogging," Physics of Fluids, Vol. 25, No. 1, 2013.
  26. Aref, H., "Motion of Three Vortices," Physics of Fluids, Vol. 22, 1979, pp. 393-400. https://doi.org/10.1063/1.862605
  27. Forster, K. J., Barber, T. J., Diasinos, S., and Doig, G., "Interactions of a Counter-rotating Vortex Pair at Multiple Offsets," Experimental Thermal and Fluid Science, Vol. 86, 2017, pp. 63-74. https://doi.org/10.1016/j.expthermflusci.2017.04.007
  28. So, J., Ryan, K., and Sheard, G. J., "Interaction of an Unequal-strength Vortex Pair," 16th Australasian Fluid Mechanics Conference, Crown Plaza, Gold Coast, Australia, 2-7 December 2007.