DOI QR코드

DOI QR Code

Deep Learning based Scrapbox Accumulated Status Measuring

  • Seo, Ye-In (Postech Institute of Artificial Intelligence, POSTECH) ;
  • Jeong, Eui-Han (Postech Institute of Artificial Intelligence, POSTECH) ;
  • Kim, Dong-Ju (Postech Institute of Artificial Intelligence, POSTECH)
  • Received : 2020.01.06
  • Accepted : 2020.02.25
  • Published : 2020.03.31

Abstract

In this paper, we propose an algorithm to measure the accumulated status of scrap boxes where metal scraps are accumulated. The accumulated status measuring is defined as a multi-class classification problem, and the method with deep learning classify the accumulated status using only the scrap box image. The learning was conducted by the Transfer Learning method, and the deep learning model was NASNet-A. In order to improve the accuracy of the model, we combined the Random Forest classifier with the trained NASNet-A and improved the model through post-processing. Testing with 4,195 data collected in the field showed 55% accuracy when only NASNet-A was applied, and the proposed method, NASNet with Random Forest, improved the accuracy by 88%.

본 논문에서는 금속스크랩이 쌓이는 스크랩박스의 적치 상태를 측정하는 알고리즘을 제안한다. 적치 상태 측정 문제를 다중 클래스 분류 문제로 정의하여, 딥러닝 기법을 이용해 스크랩박스 촬영 영상만으로 적치 상태를 구분하도록 하였다. Transfer Learning 방식으로 학습을 진행하였으며, 딥러닝 모델은 NASNet-A를 이용하였다. 더불어 분류 모델의 정확도를 높이기 위해 학습된 NASNet-A에 랜덤포레스트 분류기를 결합하였으며, 후처리를 통해 안전성을 높였다. 현장에서 수집된 4,195개의 데이터로 테스트한 결과 NASNet-A만 적용했을때 정확도 55%를 보였으며, 제안 방식인 Random Forest를 결합한 NASNet은 88%로 향상된 정확도를 달성하였다.

Keywords

References

  1. Samsung Electronics Co., Ltd., "Scrap box for automatic discharge," 10-2002-0006447, Feb 05, 2002.
  2. JH Data System Co., Ltd., "PLATFORM FOR SCRAPPING METAL BASED ON ARTIFICIAL INTELLIGENCE," 10-1981031, May 16, 2019.
  3. A. Krizhevsky, I. Sutskever, and G. E. Hinton, "ImageNet Classification with Deep Convolutional Neural Networks," COMMUNICATIONS OF THE ACM, Vol. 60, No. 6, pp. 84-90, Jun 2017. DOI: 10.1145/3065386
  4. B. Zoph, V. Vasudevan, J. Shlens, Q. V. Le, "Learning Transferable Architectures for Scalable Image Recognition," 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8697-8710, Salt Lake City, USA, June 2018. DOI: 10.1109/CVPR.2018.00907
  5. S. J. Pan and Q. Yang, "A Survey on Transfer Learning," IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, Vol. 22, No. 10, pp. 1345-1359, Oct 2010. DOI: 10.1109/TKDE.2009.191
  6. L. Breiman, "Random forests," MACHINE LEARNING, Vol. 45, No. 1, pp. 5-32. Oct 2001. DOI: 10.1023/A:1010933404324
  7. J. Deng, W. Dong, R. Socher, L. J. Li, K. Li and F. F. Li, "ImageNet: A Large-Scale Hierarchical Image Database," 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248-255, Miami, USA, June 2009. DOI: 10.1109/CVPR.2009.5206848
  8. H. Zhao, H. Liu, "Multiple classifiers fusion and CNN feature extraction for handwritten digits recognition," Granular Computing, Feb 2019. DOI: 10.1007/s41066-019-00158-6
  9. S. Agajanian, O. Oluyemi and G. M. Verkhivker, "Integration of Random Forest Classifiers and Deep Convolutional Neural Networks for Classification and Biomolecular Modeling of Cancer Driver Mutations," FRONTIERS IN MOLECULAR BIOSCIENCES, Vol. 6, pp. 83-99, Jun 2019, DOI: 10.3389/fmolb.2019.00044
  10. Data science school, "Hard voting in Majority Voting," https://datascienceschool.net/view-notebook/766fe73c5c46424ca65329a9557d0918/