DOI QR코드

DOI QR Code

Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea

  • PARK, Jongsun (InfoBoss Co., Ltd. and InfoBoss Research Center) ;
  • XI, Hong (InfoBoss Co., Ltd. and InfoBoss Research Center) ;
  • OH, Sang-Hun (Department of Biology, Daejeon University)
  • Received : 2020.02.22
  • Accepted : 2020.03.27
  • Published : 2020.03.31

Abstract

Complete chloroplast genome sequences provide detailed information about any structural changes of the genome, instances of phylogenetic reconstruction, and molecular markers for fine-scale analyses. Recent developments of next-generation sequencing (NGS) tools have led to the rapid accumulation of genomic data, especially data pertaining to chloroplasts. Short reads deposited in public databases such as the Sequence Read Archive of the NCBI are open resources, and the corresponding chloroplast genomes are yet to be completed. The V. dilatatum complex in Korea consists of four morphologically similar species: V. dilatatum, V. erosum, V. japonicum, and V. wrightii. Previous molecular phylogenetic analyses based on several DNA regions did not resolve the relationship at the species level. In order to examine the level of variation of the chloroplast genome in the V. dilatatum complex, raw reads of V. dilatatum deposited in the NCBI database were used to reconstruct the whole chloroplast genome, with these results compared to the genomes of V. erosum, V. japonicum, and three other species in Viburnum. These comparative genomics results found no significant structural changes in Viburnum. The degree of interspecific variation among the species in the V. dilatatum complex is very low, suggesting that the species of the complex may have been differentiated recently. The species of the V. dilatatum complex share large unique deletions, providing evidence of close relationships among the species. A phylogenetic analysis of the entire genome of the Viburnum showed that V. dilatatum is a sister to one of two accessions of V. erosum, making V. erosum paraphyletic. Given that the overall degree of variation among the species in the V. dilatatum complex is low, the chloroplast genome may not provide a phylogenetic signal pertaining to relationships among the species.

Keywords

References

  1. Bleidorn, C. 2016. Third generation sequencing: technology and its potential impact on evolutionary biodiversity research. Systematics and Biodiversity 14: 1-8. https://doi.org/10.1080/14772000.2015.1099575
  2. Bolger, A. M., M. Lohse and B. Usadel. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120. https://doi.org/10.1093/bioinformatics/btu170
  3. Cho, W.-B., E.-K. Han, H. J. Choi and J.-H. Lee. 2018. The complete chloroplast genome sequence of Viburnum japonicum (Adoxaceae), an evergreen broad-leaved shrub. Mitochondrial DNA Part B 3: 458-459. https://doi.org/10.1080/23802359.2018.1462121
  4. Choi, Y. G. and S.-H. Oh. 2019. A comparative morphological study of Viburnum (Adoxaceae) in Korea. Korean Journal of Plant Taxonomy 49: 107-117. https://doi.org/10.11110/kjpt.2019.49.2.107
  5. Choi, Y. G., J. W. Youm, C. E. Lim and S.-H. Oh. 2018. Phylogenetic analysis of Viburnum (Adoxaceae) in Korea using DNA sequences. Korean Journal of Plant Taxonomy 48: 206-217. https://doi.org/10.11110/kjpt.2018.48.3.206
  6. Choi, Y. G., N. Yun, J. Park, H. Xi, J. Min, Y. Kim and S.-H. Oh. 2020. The second complete chloroplast genome sequence of the Viburnum erosum (Adoxaceae) showed a low level of intra-species variations. Mitochondrial DNA Part B 5: 271-272. https://doi.org/10.1080/23802359.2019.1698360
  7. Choi, Y. G., N. Yun, J. Park, H. Xi, J. Min, Y. Kim, and S.-H. Oh. 2020. The second complete chloroplast genome sequence of the Viburnum erosum (Adoxaceae) showed a low level of intra-species variations. Mitochondrial DNA Part B 5: 271-272. https://doi.org/10.1080/23802359.2019.1698360
  8. Clement, W. L., M. Arakaki, P. W. Sweeney, E. J. Edwards and M. J. Donoghue. 2014. A chloroplast tree for Viburnum (Adoxaceae) and its implications for phylogenetic classification and character evolution. American Journal of Botany 101: 1029-1049. https://doi.org/10.3732/ajb.1400015
  9. Donoghue, M. J. 1983. The phylogenetic relationships of Viburnum. Advances in Cladistics 2: 143-166.
  10. Donoghue, M. J., B. G. Baldwin, J. Li and R. C. Winkworth. 2004. Viburnum phylogeny based on chloroplast trnK intron and nuclear ribosomal ITS DNA sequences. Systematic Botany 29: 188-198. https://doi.org/10.1600/036364404772974095
  11. Goodwin, S., J. D. McPherson and W. R. McCombie. 2016. Coming of age: ten years of next-generation sequencing technologies. Nature Reviews Genetics 17: 333-351. https://doi.org/10.1038/nrg.2016.49
  12. Greiner, S., P. Lehwark and R. Bock. 2019. OrganellarGenome-DRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47:W59-W64. https://doi.org/10.1093/nar/gkz238
  13. Hara, H. 1983. A Revision of Caprifoliaceae of Japan with Reference to Allied Plants in Other Districts and the Adoxaceae. Academia Scientific Books, Tokyo, 336 pp.
  14. Hong, S.-Y., K.-S. Cheon, K.-O. Yoo, H.-O. Lee, K.-S. Cho, J.-T. Suh, S.-J. Kim, J.-H. Nam, H.-B. Sohn and Y.-H. Kim. 2017. Complete chloroplast genome sequences and comparative analysis of Chenopodium quinoa and C. album. Frontiers in Plant Science 8: 1696. https://doi.org/10.3389/fpls.2017.01696
  15. Hou, C., N. Wikström, J. S. Strijk and C. Rydin. 2016. Resolving phylogenetic relationships and species delimitations in closely related gymnosperms using high-throughput NGS, Sanger sequencing and morphology. Plant Systematics and Evolution 302: 1345-1365. https://doi.org/10.1007/s00606-016-1335-1
  16. Huelsenbeck, J. P. and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  17. Jeon, J.-H. and S.-C. Kim. 2019. Comparative analysis of the complete chloroplast genome sequences of three closely related east-Asian wild roses (Rosa sect. Synstylae; Rosaceae). Genes (Basel) 10: 23. https://doi.org/10.3390/genes10010023
  18. Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  19. Kim, S.-H., J. Yang, J. Park, T. Yamada, M. Maki and S.-C. Kim. 2019a. Comparison of whole plastome sequences between thermogenic skunk cabbage Symplocarpus renifolius and nonthermogenic S. nipponicus (Orontioideae; Araceae) in East Asia. International Journal of Molecular Sciences 20: 4678. https://doi.org/10.3390/ijms20194678
  20. Kim, Y., J. Park and Y. Chung. 2019b. Comparative analysis of chloroplast genome of Dysphania ambrosioides (L.) Mosyakin & Clemants understanding phylogenetic relationship in genus Dysphania R.Br. Korean Journal of Plant Resources 32: 644-668. https://doi.org/10.7732/kjpr.2019.32.6.644
  21. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  22. Lexer, C., S. Mangili, E. Bossolini, F. Forest, K. N. Stolting, P. B. Pearman, N. E. Zimmermann and N. Salamin. 2013. 'Next generation' biogeography: towards understanding the drivers of species diversification and persistence. Journal of Biogeography 40: 1013-1022. https://doi.org/10.1111/jbi.12076
  23. Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at https://arxiv.org/abs/1303.3997.
  24. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Furbin and 1000 Genome Project Data Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  25. Lowe, T. M. and S. R. Eddy. 1997. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Research 25: 955-964. https://doi.org/10.1093/nar/25.5.955
  26. Metzker, M. L. 2010. Sequencing technologies: the next generation. Nature Reviews Genetics 11: 31-46. https://doi.org/10.1038/nrg2626
  27. Nei, M. and W.-H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences of the Unitd States of America 76: 5269-5273. https://doi.org/10.1073/pnas.76.10.5269
  28. Nikiforova, S. V., D. Cavalieri, R. Velasco and V. Goremykin. 2013. Phylogenetic analysis of 47 chloroplast genomes clarifies the contribution of wild species to the domesticated apple maternal line. Molecular Biology and Evolution 30: 1751-1760. https://doi.org/10.1093/molbev/mst092
  29. Park, J., Y. G. Choi, N. Yun, H. Xi, J. Min, Y. Kim and S.-H. Oh. 2019a. The complete chloroplast genome sequence of Viburnum erosum (Adoxaceae). Mitochondrial DNA Part B 4: 3278-3279. https://doi.org/10.1080/23802359.2019.1667919
  30. Park, J., Y. Kim and M. Kwon. 2019b. The complete mitochondrial genome of tulip tree, Liriodendron tulipifera L. (Magnoliaceae): intra-species variations on mitochondrial genome. Mitochondrial DNA Part B 4: 1308-1309. https://doi.org/10.1080/23802359.2019.1591242
  31. Park, J., Y. Kim and K. Lee. 2019c. The complete chloroplast genome of Korean mock strawberry, Duchesnea chrysantha (Zoll. & Moritzi) Miq. (Rosoideae). Mitochondrial DNA Part B 4: 864-865. https://doi.org/10.1080/23802359.2019.1573114
  32. Park, J., Y. Kim and H. Xi. 2019d. The complete chloroplast genome of aniseed tree, Illicium anisatum L. (Schisandraceae). Mitochondrial DNA Part B 4: 1023-1024. https://doi.org/10.1080/23802359.2019.1584062
  33. Park, J., Y. Kim, H. Xi and K.-I. Heo. 2019e. The complete chloroplast genome of ornamental coffee tree, Coffea arabica L. (Rubiaceae). Mitochondrial DNA Part B 4: 1059-1060. https://doi.org/10.1080/23802359.2019.1584060
  34. Park, J., Y. Kim, H. Xi, W. Kwon and M. Kwon. 2019f. The complete chloroplast and mitochondrial genomes of Hyunsasi tree, Populus alba x Populus glandulosa (Salicaceae). Mitochondrial DNA Part B 4: 2521-2522. https://doi.org/10.1080/23802359.2019.1598788
  35. Rehder, A. 1908. The Viburnums of eastern Asia. In Trees and Shrubs, Vol. II, Part II. Sargent, C. S. (ed.), Houghton Mifflin, Boston, MA. Pp. 105-116.
  36. Smith, S. A. and M. J. Donoghue. 2008. Rates of molecular evolution are linked to life history in flowering plants. Science 322: 86-89. https://doi.org/10.1126/science.1163197
  37. Wang, H.-X., H. Liu, M. J. Moore, S. Landrein, B. Liu, Z.-X. Zhu and H.-F. Wang. 2020. Plastid phylogenomic insights into the evolution of the Caprifoliaceae s.l. (Dipsacales). Molecular Phylogenetics and Evolution 142: 106641. https://doi.org/10.1016/j.ympev.2019.106641
  38. Xiang, C.-L., H.-J. Dong, S. Landrein, F. Zhao, W.-B. Yu, D. E. Soltis, P. S. Soltis, A. Backlund, H.-F. Wang, D.-Z. Li and H. Peng. 2019. Revisiting the phylogeny of Dipsacales: new insights from phylogenomic analyses of complete plastome sequences. Journal of Systematics and Evolution 58: 103-117. https://doi.org/10.1111/jse.12526
  39. Zerbino, D. R. and E. Birney. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821-829. https://doi.org/10.1101/gr.074492.107
  40. Zhao, Q.-Y., Y. Wang, Y.-M. Kong, D. Luo, X. Li and P. Hao. 2011. Optimizing de novo transcriptome assembly from shortread RNA-Seq data: a comparative study. BMC Bioinformatics 12: S2.
  41. Zimmer, E. A. and J. Wen. 2015. Using nuclear gene data for plant phylogenetics: progress and prospects II. Next-gen approaches. Journal of Systematics and Evolution 53: 371-379. https://doi.org/10.1111/jse.12174

Cited by

  1. The Complete Chloroplast Genome of Arabidopsis thaliana Isolated in Korea (Brassicaceae): An Investigation of Intraspecific Variations of the Chloroplast Genome of Korean A. thaliana vol.2020, 2020, https://doi.org/10.1155/2020/3236461
  2. The Comparative Analyses of Six Complete Chloroplast Genomes of Morphologically Diverse Chenopodium album L. (Amaranthaceae) Collected in Korea vol.2021, 2021, https://doi.org/10.1155/2021/6643444
  3. The complete mitochondrial genome of Douinia plicata (Lindb.) Konstant. et. Vilnet (Scapaniaceae, Jungermanniales) vol.6, pp.3, 2020, https://doi.org/10.1080/23802359.2021.1882901
  4. A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea vol.51, pp.1, 2021, https://doi.org/10.11110/kjpt.2021.51.1.109
  5. Complete Genome Sequence of a Blochmannia Endosymbiont of Colobopsis nipponica vol.10, pp.17, 2020, https://doi.org/10.1128/mra.01195-20
  6. The complete chloroplast genome of Castanopsis sieboldii (Makino) Hatus (Fagaceae) vol.6, pp.9, 2020, https://doi.org/10.1080/23802359.2021.1966339
  7. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes vol.11, pp.1, 2020, https://doi.org/10.1038/s41598-021-95940-5