DOI QR코드

DOI QR Code

Relationship of Threshold Voltage Roll-off and Gate Oxide Thickness in Asymmetric Junctionless Double Gate MOSFET

비대칭형 무접합 이중게이트 MOSFET에서 산화막 두께와 문턱전압이동 관계

  • Jung, Hakkee (Dept. of Electronic Engineering, Kunsan National University)
  • Received : 2020.03.06
  • Accepted : 2020.03.20
  • Published : 2020.03.31

Abstract

The threshold voltage roll-off for an asymmetric junctionless double gate MOSFET is analyzed according to the top and bottom gate oxide thicknesses. In the asymmetric structure, the top and bottom gate oxide thicknesses can be made differently, so that the top and bottom oxide thicknesses can be adjusted to reduce the leakage current that may occur in the top gate while keeping the threshold voltage roll-off constant. An analytical threshold voltage model is presented, and this model is in good agreement with the 2D simulation value. As a result, if the thickness of the bottom gate oxide film is decreased while maintaining a constant threshold voltage roll-off, the top gate oxide film thickness can be increased, and the leakage current that may occur in the top gate can be reduced. Especially, it is observed that the increase of the bottom gate oxide thickness does not affect the threshold voltage roll-off.

본 논문에서는 비대칭 무접합 이중게이트 MOSFET에 대한 문턱전압이동을 상단과 하단 게이트 산화막 두께에 따라 분석하였다. 비대칭 구조에서는 상단과 하단 게이트 산화막 두께를 달리 제작할 수 있으므로 문턱전압이동을 일정하게 유지하면서 상단 게이트에서 발생할 수 있는 누설전류를 감소시키기 위하여 상단과 하단 산화막 두께를 조정할 수 있다. 이를 위하여 해석학적 문턱전압 모델을 제시하였으며 이 모델은 2차원 시뮬레이션 값과 잘 일치하였다. 결과적으로 일정한 문턱전압이동을 유지하면서 하단 게이트 산화막 두께를 감소시키면 상단 게이트 산화막 두께를 증가시킬 수 있어 상단 게이트에서 발생할 수 있는 누설전류를 감소시킬 수 있을 것이다. 특히 하단 게이트 산화막 두께가 증가하여도 문턱전압이동에는 큰 영향을 미치지 않는다는 것을 관찰하였다.

Keywords

References

  1. D. Sarkar, D. Datta, and S. Dasgupta, "Modeling of Leakage Current Mechanisms in Nanoscale DGMOSFET and its Application to Low Power SRAM Design," J. of Computers, Vol.3, No.2, pp.37-47, 2008. DOI: 10.4304/ jcp.3.2.37-47
  2. V. Narendar and R.A. Mishra, "Analytical modeling and simulation of multigate FinFET devices and the impact of high-k dielectrics on short channel effects (SCEs)," Superlattices and Microstructures, Vol.85, pp.357-369, 2015. DOI: 10.1016/j.spmi.2015.06.004
  3. S. Choe, K. Kwon, and S. Kim, "Performance Analysis of Tri-gate FinFET for Different Fin Shape and Source/Drain Structures," J. of the Institute of Electronics and Information Engineering, Vol.51, No.7, pp.1497-1507, 2014. DOI: 10.5573/ieie.2014.51.7.071
  4. D. Manners, "Samsung starts mass production of 10nm 16Gb automotive LPDDR4X DRAM," https://www.electronicsweekly.com/news/business/samsung-starts-mass-production-10nm-16gb-automotive-lpddr4x-dram-2018-04/ 2018.
  5. Y. Liu, T. Matsukawa, K. Endo, M. Masahara, S. Ouchi, K. Ishi, H. Yamauchi, J. Tsukada, Y. Ishikawa, and E. Suzuki, "Cointegration of High-Performance Tied-Gate Three-Terminal FinFETs and Variable Threshold-Voltage Independent-Gate Four-Terminal FinFETs With Asymmetric Gate-Oxide Thi8cknesses," IEEE Electron Device Letters, Vol.28, No.6, pp.517-519, 2007. DOI: 10.1109/LED.2007.896898
  6. Z. Ding, G. Hu, J. Gu, R. Liu, L. Wang, and T. Tang, "An analytic model for channel potential and subthreshold swing of the symmetric and asymmetric double-gate MOSFETs," Microelectronics J., Vol.42, No.3, pp.515-519, 2011. DOI: 10.1016/j.mejo.2010.11.002
  7. C. Jiang, R. Liang, J. Wang and J. Xu, "A two-dimensional analytical model for short channel junctionless double-gate MOSFETs," AIP ADVANCES, Vol.5, pp.057122, 2015. DOI: 10.1063/1.4921086
  8. H. Jung, "Analysis of Subthreshold Swing in Symmetric Junctionless Double Gate MOSFET Using high-k Gate Oxides," Int. J. Elec. & Elecn. Eng. & Telcomm, Vol.8, No.6, pp.334-339, 2019. DOI: 10.18178/ijeetc.8.6.334-339
  9. Q. Xie, Z. Wang, and Y. Taur, "Analysis of Short-Channel Effects in Junctionless DG MOSFETs," IEEE Trans. Electron Devices, Vol.64, No.8, pp. 3511-3514, 2017. DOI: 10.1109/TED.2017.2716969

Cited by

  1. 대칭형 무접합 이중게이트 MOSFET에서 스케일 길이를 이용한 문턱전압 이하 스윙 모델 vol.34, pp.2, 2020, https://doi.org/10.4313/jkem.2021.34.2.142