DOI QR코드

DOI QR Code

Analysis of External Representations in Matter Units of 7th Grade Science Textbooks Developed Under the 2015 Revised National Curriculum

2015 개정 교육과정에 따른 7학년 과학교과서 물질 영역에 제시된 외적 표상의 분석

  • Received : 2020.01.09
  • Accepted : 2020.02.11
  • Published : 2020.02.29

Abstract

In this study, external representation presented in two units, 'Property of Gas' and 'Changes of States of Matter,' in seventh grade of 2015 revised science curriculum, were analyzed to suggest educational implications. External representations presented in five science textbooks were analyzed according to the six criteria, which were 'type of representation,' 'interpretation of surface features,' 'relatedness to text,' 'existence and properties of a caption,' 'degree of correlation between representations comprising a multiple one,' and 'function of representation.' The characteristics of typical representations related to each achievement standard of two units were also analyzed. The results were as follows: The macro representations for 'type of representation', and explicit representations for 'interpretation of surface features' showed highest frequency. For 'relatedness to text' criteria, 'completely related and linked' and 'completely related and unlinked' representations showed the highest frequency. It means that most representations were properly related with the text. There were appropriate captions for most representations. The degree of correlation between representations comprising a multiple one was largely sufficiently linked with regards to the criteria 'degree of correlation between representations comprising a multiple one'. The complete representations for 'function of representation' showed the highest frequency in the aggregate, however incomplete representations showed more frequencies in the inquiry parts. The typical representations for each achievement standard differed in terms of the type, contained information, used symbols and so on. The educational implications with the use of representations presented in seventh grade textbook were discussed.

이 연구에서는 2015 개정 교육과정 7학년 과학의 물질 영역인 '기체의 성질'과 '물질의 상태 변화' 단원에 제시된 외적 표상을 분석하여 표상을 활용한 과학교육을 위한 시사점을 도출하고자 하였다. 표상의 유형, 표면적 특성의 해석, 본문과의 관련성, 캡션의 존재와 특성, 복합적 표상에서 표상 간 관련성, 표상의 기능의 여섯 가지 범주로 구성된 분석틀을 이용하여 다섯 종의 교과서에 나타난 표상의 특성을 분석하였다. 또한, '기체의 성질'과 '물질의 상태 변화' 단원의 성취기준을 설명하는 각 교과서에 제시된 대표적인 표상의 특징을 분석하였다. 연구의 결과는 다음과 같다. 먼저 표상의 유형에서는 거시적 표상이 가장 높은 빈도로 나타났으며, 표면적 특성의 해석 범주에서는 명시적 특성을 가진 표상의 빈도가 가장 높았다. 본문과의 관련성 범주의 분석 결과, 대부분의 표상이 완전한 연관성과 연결 또는 완전한 연관성과 비연결에 해당하여 표상과 본문 내용은 일관성 있게 연관되어 있는 것으로 나타났다. 캡션의 존재와 특성 범주에서는 적절한 캡션이 존재하는 표상의 빈도가 가장 높았고, 복합적 표상에서 표상 간의 관련성은 충분히 연결된 표상이 대부분이었다. 표상의 기능 범주에서는 완성형이 가장 높은 빈도를 보였으나 탐구 활동에 제시된 표상에서는 미완성형이 높은 빈도를 나타냈다. 성취기준과 관련된 대표적인 표상을 분석한 결과, 표상의 유형, 표상에 제시된 정보및 기호의 사용 등에서 교과서별로 차이를 나타냈다. 연구의 결과로부터 7학년 물질 영역의 표상 활용과 관련된 교육적 시사점을 논의하였다.

Keywords

References

  1. Adadan, E., Irving, K. E., & Trundle, K. C. (2009). Impacts of multi-representational instruction on high school students' conceptual understandings of the particulate nature of matter. International Journal of Science Education, 31(13), 1743-1775. https://doi.org/10.1080/09500690802178628
  2. Ainsworth, S. (1999). The functions of multiple representations. Computers & Education, 33(2), 131-152. https://doi.org/10.1016/S0360-1315(99)00029-9
  3. Ainsworth, S., Prain, V., & Tytler, R. (2011). Drawing to learn in science. Science, 333(6046), 1096-1097. https://doi.org/10.1126/science.1204153
  4. Akaygun, S. (2016). Is the oxygen atom static or dynamic? The effect of generating animations on students' mental models of atomic structure. Chemistry Education Research and Practice, 17(4), 788-807. https://doi.org/10.1039/C6RP00067C
  5. Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 2000, 22(9), 895-935. https://doi.org/10.1080/095006900416848
  6. Chiappetta E. L., & Fillman D. A., (2007), Analysis of five high school biology textbooks used in the United States for inclusion of the nature of science. International Journal of Science Education, 29(15), 1847-1868. https://doi.org/10.1080/09500690601159407
  7. de Jong, T., Ainsworth, S., Dobson, M., van der Hulst, A., Levonen, J., & Reimann, P. (1998). Acquiring knowledge in science and mathematics: The use of multiple representations in technology-based learning environments. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with multiple representations(pp. 9-40). Oxford, UK: Pergamon.
  8. Dickmann, T., Opfermann, M., Dammann, E., Lang, M., & Rumann, S. (2019). What you see is what you learn? The role of visual model comprehension for academic success in chemistry. Chemistry Education Research and Practice, 20(4), 804-820. https://doi.org/10.1039/C9RP00016J
  9. Eisner, E. W. (1994). Cognition and Curriculum Reconsidered. Teachers College Press.
  10. Gilbert, J. K. (2010). Visualization: An emergent field of practice and inquiry in science education. In J. K. Gilbert, M. Reiner, & M. Nakhleh. Visualization: Theory and practice in science education(pp. 3-27). Springer.
  11. Gilbert, J. K. & Treagust, D. F. (Eds.). (2009). Multiple representations in chemical education. Springer.
  12. Gkitzia, Vasiliki., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5-14. https://doi.org/10.1039/C1RP90003J
  13. Harrison, A. G., & Treagust, D. F. (2000). Learning about atoms, molecules and chemical bonds: A case-study of multiple model use in grade 11 chemistry. Science Education, 84, 352-381. https://doi.org/10.1002/(SICI)1098-237X(200005)84:3<352::AID-SCE3>3.0.CO;2-J
  14. Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. Mosenthal, & P. D. Pearson, Handbook of Reading Research, vol 2. (pp. 641-668). New York: Longman.
  15. Irez, S. (2009). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422-447. https://doi.org/10.1002/sce.20305
  16. Jo, K., Jho, H., & Yoon, H. G. (2015). Analysis of visual representations related to electromagnetism in primary and secondary science textbooks. New Physics: Sae Mulli, 65(4), 343-357. https://doi.org/10.3938/NPSM.65.343
  17. Johnstone, A. H. (1982). Macro-and micro-chemistry. School Science Review, 64(227), 377-379.
  18. Kang, H., Kim, Y., & Noh, T. (2007). Analysis of the uses of external representations in material units of 7th grade science textbooks developed under the 7th national curriculum. Journal of Korean Association for Research in Science Education, 27(3), 190-200.
  19. Kapici, H. O & Acikalin, F. S. (2015). Examination of visuals about the particulate nature of matter in turkish middle school science textbooks. Chemistry Education Research and Practice, 16(3), 518-536. https://doi.org/10.1039/C5RP00032G
  20. Kim, S., & Han, J. (2007). An analysis of inscriptions used in 10th grade science textbooks. Journal of Science and Science Education, 20(1), 1-11.
  21. Kim, H. R., Kim, S. H., Kim, M. S., Lee, Y. S., Hwang, S. Y., Lee, S. H., Ro, E. K., Rim, H., Bae, M. J., Lee, T. W., Kwon, O. S., Park, G. T., & Song, S. J. (2017a). Middle School Science. Seoul: DongA
  22. Kim, S. J., Ahn, H. J., Jo, Y. G., Choi, M, H., Kim, H. W., Jang, C. H., Kim, H. K., Kwon, H. S., Oh, H. S., Ku, H. M., Kang, H. J., Kim, D. J., Lee, J. W., Rho, H. G., Moon, M. H., Lee, Y. J., & Yoo, M. I. (2017b). Middle School Science. Seoul: MiraeN.
  23. Kim, H., Shin, M. K., Lee, G., & Kwon G. P. (2014). The types, roles and socio-semiotic features of visual materials in elementary science textbook. Journal of Science Education, 38(3), 641-656. https://doi.org/10.21796/jse.2014.38.3.641
  24. Kim, H. J., Son, Y. A., & Min, B. M. (2009). Development and application of standard for analyzing inscriptions in biology I textooks. Biology Educagion, 37(3), 390-402. https://doi.org/10.15717/bioedu.2009.37.3.390
  25. Kozma, R. (2003). The material features of multiple representations and their cognitive and social affordances for science understanding. Learning and Instruction, 13(2), 205-226. https://doi.org/10.1016/S0959-4752(02)00021-X
  26. Kozma, R. & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 43(9), 949-968. https://doi.org/10.1002/(SICI)1098-2736(199711)34:9<949::AID-TEA7>3.0.CO;2-U
  27. Kozma, R. & Russell, J. (2005). Students becoming chemists: developing representationl competence. In J. K. Gilbert (Ed.), Visualization in science education(pp. 121-145). Dordrecht, Netherlands: Springer.
  28. Kwon, Y, Y., Yoo, H., & Jeong, E. Y. (2011). An analysis of illustraions in middle school science textbooks-focused on the unit 'digestion and circulation'-. Biology Education, 39(4), 517-528. https://doi.org/10.15717/bioedu.2011.39.4.517
  29. Lebrun, J., Lenori, Y., Laforest, M., Larose, F., Roy, G. R., Spallanzani, C. & Pearson, M. (2002). Past and current trends in the analysis of textbooks in a Quebec context. Curriculum Inquiry, 32(1), 51-83. https://doi.org/10.1111/1467-873X.00215
  30. Lee, K. Y. (2009). Analysis of the type, function, and structure of inscriptions in middle school science textbooks: Focus on earth science content of the 7th national curriculum. Journal of Korean Earth Science Society, 30(7), 897-908. https://doi.org/10.5467/JKESS.2009.30.7.897
  31. Lim, T. H., Baek, J. M., Nam, K. W., Kang, T. W., Kang, D. H., Lee, B. Y., Jang, H. S., Hwang, Y. S., Kim, M. K., Lee, Y. C., Go, H. D., & Shin, M. Y. (2017). Middle School Science. Seoul: Visang.
  32. Mayer, R. E. (2002). Cognitive theory and the design of multimedia instruction: An example of the two-way street between cognition and instruction. New Directions for Teaching and Learning, 89, 55-71. https://doi.org/10.1002/tl.47
  33. Mayer, R. E. (2003). The promise of multimedia learning: using the same instructional design methods across different media. Learning and Instruction, 13(2), 125-139. https://doi.org/10.1016/S0959-4752(02)00016-6
  34. Ministry of Education(MOE). (2015) Revised national curriculum. 2015. Ministry of Education, Science and Technology. Notice No. 2015-74.
  35. Noh, S. G., Kang, C. H., Kim, J. W., Park, Y. H., Kim, H. S., Lee, J. M., Bae, Y. J., Lee, B. R., Moon, T. J., Park, J. Y., Park, J. I., Kim, Y, G., & Lim, J. S. (2017a). Middle School Science. Seoul: YBM.
  36. Noh, T. H., Lee, B. W., Kim, S. K., Jang, J. M., Kang, S. J., Lim, H. Y., Yang, C. H., Park, J. G., Min, J. S., Bae, Y. H., Park, J. G., Min, J. S., Bae, Y. H., Oh, P. S., Kim, Y. G., & Park, C. Y. (2017b). Middle School Science. Seoul: Chunjae.
  37. Oh, M. K. & Jeong, E. (2019). An analysis of illustrations on the unit 'stimulus and reaction' in middle school science textbooks. Journal of Education Science, 21(1), 179-200.
  38. Oh, J. Y., Park, J. S., & Park, I. W. (2017). Analysis of the types, roles, and socio-sematic features of visual materials in 2009 revised elementary science textbooks. The Journal of Korea Elementary Education, 28(2), 19-30.
  39. Pozzer, L. L. & Roth, W. M. (2003). Prevalence, function, and structure of photographs in high school biology textooks. Journal of Research in Science Teaching, 40(10), 1089-1114. https://doi.org/10.1002/tea.10122
  40. Savelsberg, E. R., de Jong, T., & Ferguson-Hessler, M. G. M. (1998). Competence-related differences in problem representations: A study in physics problem solving. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.), Learning with multiple representations(pp. 263-282). Oxford, UK: Pergamon.
  41. Seufert, T. (2003). Supporting coherence formation in learning from multiple representations. Learning and Instruction, 13(2), 227-237. https://doi.org/10.1016/S0959-4752(02)00022-1
  42. Shehab, S. S. & BouJaoude, S. (2017). Analysis of the chemical representations in secondary Lebanese Chemistry Textbooks. International Journal of Science and Mathematics Education, 15(5), 797-816. https://doi.org/10.1007/s10763-016-9720-3
  43. Tasker, R., & Dalton, R. (2008). Visualizing the molecular world-Design, evaluation, and use of animations. In J. K. Gilbert, M. Reiner, & M. Nakhleh (Eds.), Visualization: Theory and practice in science education (pp. 103-131). Dordrecht, The Netherlands: Springer.
  44. Tippett, D. E. (2016). What recent research on diagrams suggests about learning with rather than learning from visual representations in science. International Journal of Science Education, 38(5), 725-746. https://doi.org/10.1080/09500693.2016.1158435
  45. Treagust, D. F., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 2003, 25(11), 1353-1368. https://doi.org/10.1080/0950069032000070306
  46. Upahi, J. E. & Ramnarain (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146-159. https://doi.org/10.1039/C8RP00191J
  47. van Someren, M. W., Reimann, P., Boshuizen, H. P. A., de Jong, T. & Reimann, P. (1998). Introduction. In M. W. van Someren, P. Reimann, H. P. A. Boshuizen & T. de Jong (Eds.). Learning with multiple representations(pp. 1-5). Oxford, UK: Pergamon.
  48. Weinburgh, M. (2003). Confronting and changing middle school teachers' perceptions of scientific methodology. School Science and Mathematics, 103(5), 222-232. https://doi.org/10.1111/j.1949-8594.2003.tb18203.x
  49. Wu, H. K. (2003). Linking the microscopic view of chemistry to real-life experiences: Intertextuality in a high-school science classroom. Science Education, 87(6), 868-891. https://doi.org/10.1002/sce.10090
  50. Wu, H. K., Lin, Y. F., & Hsu, Y. S. (2013). Effects of representation sequences and spatial ability on students' scientific understandings about the mechanism of breathing. Instructional Science, 41(3), 555-573. https://doi.org/10.1007/s11251-012-9244-3

Cited by

  1. 2015 개정 교육과정에 따른 중학교 1학년 디지털교과서의 물질 단원에서 나타난 외적 표상의 활용 실태 분석 vol.64, pp.6, 2020, https://doi.org/10.5012/jkcs.2020.64.6.416