DOI QR코드

DOI QR Code

Seismic response analysis of embankment dams under decomposed earthquakes

  • Nasiri, Fatemeh (Department of Civil Engineering, Shahrekord University) ;
  • Javdanian, Hamed (Department of Civil Engineering, Shahrekord University) ;
  • Heidari, Ali (Department of Civil Engineering, Shahrekord University)
  • Received : 2019.12.03
  • Accepted : 2020.03.05
  • Published : 2020.04.10

Abstract

In this study, the seismic response analysis of embankment dams was investigated through numerical modeling. The seismic behavior of dams under main earthquake records and wavelet-based records were studied. Earthquake records were decomposed using de-noising method (DNM) and down-sampling method (DSM) up to five levels. In decomposition process, low and high frequencies of the main earthquake record were separated into two signals. Acceleration response, spectral acceleration, and Fourier amplitude spectrum at the crest of embankment dams under different decomposition levels were evaluated. The seismic behavior under main and decomposed earthquake records was compared. The results indicate an acceptable agreement between the seismic responses of embankment dams under wavelet-based decomposed records and main earthquake motions. Dynamic analyses show that the DNM-based decomposed earthquake records have a better performance compared to DSM-based records. DNM-based records up to level 4 and DSM-based records up to level 2 have a high accuracy in assessment of seismic behavior of embankment dams. The periods corresponding to the maximum values of acceleration spectra and the frequencies corresponding to the maximum values of Fourier amplitude spectra of embankment dam crest under main and decomposed records are in good agreement. The results demonstrate that the main earthquake records can be replaced by wavelet-based decomposed records in seismic analysis of embankment dams.

Keywords

References

  1. Aliberti, D., Cascone, E. and Biondi, G. (2016), "Seismic performance of the San Pietro dam", Procedia Eng. 158, 362-367. https://doi.org/10.1016/j.proeng.2016.08.456.
  2. Amorosi, A., Boldini, D. and Di Lernia, A. (2016), "Seismic ground response at Lotung: Hysteretic elasto-plastic-based 3D analyses", Soil Dyn. Earthq. Eng., 85, 44-61. https://doi.org/10.1016/j.soildyn.2016.03.001.
  3. Andrianopoulos, K.I., Papadimitriou, A.G., Bouckovalas, G.D. and Karamitros, D.K. (2014), "Insight into the seismic response of earth dams with an emphasis on seismic coefficient estimation", Comput. Geotech., 55, 195-210. https://doi.org/10.1016/j.compgeo.2013.09.005.
  4. Ansari, A., Noorzad, A. and Zare, M. (2007), "Application of wavelet multi-resolution analysis for correction of seismic acceleration records", J. Geophys. Eng., 4(4), 362-377. https://doi.org/10.1088/1742-2132/4/4/002.
  5. Ansari, A., Noorzad, A., Zafarani, H. and Vahidifard, H. (2010), "Correction of highly noisy strong motion records using a modified wavelet de-noising method", Soil Dyn. Earthq. Eng., 30(11), 1168-1181. https://doi.org/10.1016/j.soildyn.2010.04.025.
  6. Apaydin, N.M., Bas, S. and Harmandar, E. (2016), "Response of the Fatih Sultan Mehmet Suspension Bridge under spatially varying multi-point earthquake excitations", Soil Dyn. Earthq. Eng., 84, 44-54. https://doi.org/10.1016/j.soildyn.2016.01.018.
  7. Banjade, T.P., Yu, S. and Ma, J. (2019), "Earthquake accelerogram denoising by wavelet-based variational mode decomposition", J. Seismol., 23(4), 649-663. https://doi.org/10.1007/s10950-019-09827-0.
  8. Bas, S., Apaydin, N.M., Harmandar, E., and Catbas, N. (2018), "Multi-point earthquake response of the Bosphorus Bridge to site-specific ground motions", Steel Compos. Struct., 26(2), 197-211. https://doi.org/10.12989/scs.2018.26.2.197.
  9. Bayraktar, A. and Kartal, M.E. (2010), "Linear and nonlinear response of concrete slab on CFR dam during earthquake" Soil Dyn. Earthq. Eng., 30(10), 990-1003. https://doi.org/10.1016/j.soildyn.2010.04.010.
  10. Brinkgreve, R.B.J. (2002), Plaxis 2D: finite element code for soil and rock analyses, Version 8, Balkema Publisher, The Netherlands.
  11. Cascone, E. and Rampello, S. (2003), "Decoupled seismic analysis of an earth dam", Soil Dyn. Earthq. Eng., 23(5), 349-365. https://doi.org/10.1016/S0267-7261(03)00035-6.
  12. Castelli, F., Lentini, V. and Trifaro, C.A. (2016), "1D seismic analysis of earth dams: the example of the Lentini site", Procedia Eng., 158, 356-361. https://doi.org/10.1016/j.proeng.2016.08.455.
  13. Chakraborty, S., Das, J.T., Puppala, A.J. and Banerjee, A. (2019), "Natural frequency of earthen dams at different induced strain levels", Eng. Geol., 248, 330-345. https://doi.org/10.1016/j.enggeo.2018.12.008.
  14. Charatpangoon, B., Kiyono, J., Furukawa, A. and Hansapinyo, C. (2014), "Dynamic analysis of earth dam damaged by the 2011 off the Pacific Coast of Tohoku earthquake", Soil Dyn. Earthq. Eng., 64, 50-62. https://doi.org/10.1016/j.soildyn.2014.05.002.
  15. Chen, M. and Harichandran, R.S. (2001), "Response of an earth dam to spatially varying earthquake ground motion", J. Eng. Mech., 127(9), 932-939. https://doi.org/10.1061/(ASCE)0733-9399(2001)127:9(932).
  16. Chen, S.S., Fu, Z.Z., Wei, K.M. and Han, H.Q. (2016), "Seismic responses of high concrete face rockfill dams: A case study", Water Sci. Eng., 9(3), 195-204. https://doi.org/10.1016/j.wse.2016.09.002.
  17. Crochiere, R.E. (1981), "Digital signal processor: Sub‐band coding", Bell Syst. Tech. J., 60(7), 1633-1653. https://doi.org/10.1002/j.1538-7305.1981.tb00288.x.
  18. Daubechies, I. (1990), "The wavelet transform, time-frequency localization and signal analysis", IEEE T. Inf. Theor., 36(5), 961-1005. https://doi.org/10.1109/18.57199.
  19. Davoodi, M., Jafari, M.K. and Hadiani, N. (2013a), "Seismic response of embankment dams under near-fault and far-field ground motion excitation", Eng. Geol., 158, 66-76. https://doi.org/10.1016/j.enggeo.2013.02.008.
  20. Davoodi, M., Jafari, M.K. and Sadrolddini, S.M.A. (2013b), "Effect of multi-support excitation on seismic response of embankment dams", Int. J. Civ. Eng., 11(1), 19-28.
  21. Ding, X.M., Liu, H.L., Yu, T. and Kong, G.Q. (2013), "Nonlinear finite element analysis of effect of seismic waves on dynamic response of Shiziping dam", J. Central South Univ., 20(8), 2323-2332. https://doi.org/10.1007/s11771-013-1740-3.
  22. Ebrahimian, B. (2011), "Numerical analysis of nonlinear dynamic behavior of earth dams", Front. Archit. Civ. Eng. China, 5(1), 24-40. https://doi.org/10.1007/s11709-010-0082-6.
  23. Elgamal, A.W.M., Scott, R.F., Succarieh, M.F. and Yan, L. (1990), "La Villita dam response during five earthquakes including permanent deformation", J. Geotech. Eng., 116(10), 1443-1462. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:10(1443).
  24. Farge, M. (1992). Wavelet transforms and their applications to turbulence. Ann. Rev. Fluid Mech., 24(1), 395-458. https://doi.org/10.1146/annurev.fl.24.010192.002143.
  25. Feng, Z., Tsai, P.H. and Li, J.N. (2010), "Numerical earthquake response analysis of the Liyutan earth dam in Taiwan", Nat. Hazards Earth Syst., 10(6), 1269-1280. https://doi.org/10.5194/nhess-10-1269-2010.
  26. Ghodrati Amiri, G., Rad, A.A. and Hazaveh, N.K. (2014), "Wavelet-based method for generating nonstationary artificial pulse-like near-fault ground motions", Comput-Aided Civ. Inf. Eng., 29(10), 758-770. https://doi.org/10.1111/mice.12110.
  27. Haigh, S.K., Teymur, B., Madabhushi, S.P.G. and Newland, D.E. (2002), "Applications of wavelet analysis to the investigation of the dynamic behaviour of geotechnical structures", Soil Dyn. Earthq. Eng., 22(9-12), 995-1005. https://doi.org/10.1016/S0267-7261(02)00124-0.
  28. Heidari, A., Pahlavan Sadegh, S. and Raeisi, J. (2019), "Investigating the effect of soil type on non-linear response spectrum using wavelet theory", Int. J. Civ. Eng., 17(12), 1909-1918. https://doi.org/10.1007/s40999-019-00394-6.
  29. Holschneider, M. (1995), Wavelets: An Analysis Tool, Oxford Science Publications, Oxford.
  30. Hu, H. and Huang, Y. (2019), "A dynamic reliability approach to seismic vulnerability analysis of earth dams", Geomech. Eng., 18(6), 661-668. https://doi.org/10.12989/gae.2019.18.6.661.
  31. Hwang, J.H., Wu, C.P. and Wang, S.C. (2007), "Seismic record analysis of the Liyutan earth dam", Can. Geotech. J., 44(11), 1351-1377. https://doi.org/10.1139/T07-062.
  32. Jafarian, Y., Haddad, A. and Javdanian, H. (2015), "Comparing the shear stiffness of calcareous and silicate sands under dynamic and cyclic straining", Proceedings of the 7th International Conference of Seismology and Earthquake Engineering (SEE7), Tehran, Iran, May.
  33. Javdanian, H. (2019), "Evaluation of soil liquefaction potential using energy approach: Experimental and statistical investigation", Bull. Eng. Geol. Environ., 78(3), 1697-1708. https://doi.org/10.1007/s10064-017-1201-6.
  34. Javdanian, H. and Lee, S. (2019), "Evaluating unconfined compressive strength of cohesive soils stabilized with geopolymer: a computational intelligence approach", Eng. Comput., 35(1), 191-199. https://doi.org/10.1007/s00366-018-0592-8.
  35. Javdanian, H. and Pradhan, B. (2019), "Assessment of earthquakeinduced slope deformation of earth dams using soft computing techniques", Landslides, 16(1), 91-103. https://doi.org/10.1007/s10346-018-1078-x.
  36. Javdanian, H., Heidari, A. and Kamgar, R. (2017), "Energy-based estimation of soil liquefaction potential using GMDH algorithm", Iran. J. Sci. Technol. Trans. Civ. Eng., 41(3), 283-295. https://doi.org/10.1007/s40996-017-0061-4.
  37. Javdanian, H., Shakarami, L. and Zarif Sanayei, H.R. (2018), "Modeling seismic settlement of earth dams due to earthquake loading", Proceedings of the International Conference on New Findings of Civil, Architectural and Iran Building Industry, Tehran, Iran, December.
  38. Javdanian, H., Zarif Sanayei, H.R. and Shakarami, L. (2020), "A regression-based approach to the prediction of crest settlement of embankment dams under earthquake shaking", Sci. Iran. https://doi.org/10.24200/sci.2018.50483.1716.
  39. Karabulut, M. and Genis, M. (2019), "Pseudo seismic and static stability analysis of the Torul Dam", Geomech. Eng., 17(2), 207-214. https://doi.org/10.12989/gae.2019.17.2.207.
  40. Kaveh, A. and Mahdavi, V.R. (2016), "A new method for modification of ground motions using wavelet transform and enhanced colliding bodies optimization", Appl. Soft Comput., 47, 357-369. https://doi.org/10.1016/j.asoc.2016.06.021.
  41. Kuhlemeyer, R.L. and Lysmer, J. (1973), "Finite element method accuracy for wave propagation problems", J. Soil Mech. Found. Div., 99, 421-427. https://doi.org/10.1061/JSFEAQ.0001885
  42. Lashgari, A., Jafarian, Y. and Haddad, A. (2018), "Predictive model for seismic sliding displacement of slopes based on a coupled stick-slip-rotation approach", Eng. Geol., 244, 25-40. https://doi.org/10.1016/j.enggeo.2018.07.017.
  43. Moghaddam, A.B. and Bagheripour, M.H. (2014), "Optimization of ground response analysis using wavelet-based transfer function technique", Geomech. Eng., 7(2), 149-164. https://doi.org/10.12989/gae.2014.7.2.149.
  44. Nasiri, F., Javdanian, H. and Heidari, A. (2019), "Behavior of earth dams due to downsampling-based records", Proceedings of the 8th International Conference on Seismology and Earthquake Engineering (SEE8), Tehran, Iran, November.
  45. Papadimitriou, A.G., Bouckovalas, G.D. and Andrianopoulos, K.I. (2014), "Methodology for estimating seismic coefficients for performance-based design of earthdams and tall embankments", Soil Dyn. Earthq. Eng., 56, 57-73. https://doi.org/10.1016/j.soildyn.2013.10.006.
  46. Papalou, A. and Bielak, J. (2001), "Seismic elastic response of earth dams with canyon interaction", J. Geotech. Geoenviron. Eng., 127(5), 446-453. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:5(446).
  47. Papalou, A. and Bielak, J. (2004), "Nonlinear seismic response of earth dams with canyon interaction", J. Geotech. Geoenviron. Eng., 130(1), 103-110. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:1(103).
  48. Park, D.S. and Kim, N.R. (2017), "Safety evaluation of cored rockfill dams under high seismicity using dynamic centrifuge modeling", Soil Dyn. Earthq. Eng., 97, 345-363. https://doi.org/10.1016/j.soildyn.2017.03.020.
  49. Pelecanos, L., Kontoe, S. and Zdravkovic, L. (2015), "A case study on the seismic performance of earth dams", Geotechnique, 65(11), 923-935. https://doi.org/10.1680/jgeot.SIP.15.P.009.
  50. Pelecanos, L., Kontoe, S. and Zdravkovic, L. (2018), "The effects of dam-reservoir interaction on the nonlinear seismic response of earth dams", J. Earthq. Eng., 1-23. https://doi.org/10.1080/13632469.2018.1453409.
  51. Rampello, S., Cascone, E. and Grosso, N. (2009), "Evaluation of the seismic response of a homogeneous earth dam", Soil Dyn. Earthq. Eng., 29(5), 782-798. https://doi.org/10.1016/j.soildyn.2008.08.006.
  52. Rioul, O. and Vetterli, M. (1991), "Wavelets and signal processing", IEEE Signal Process. Mag., 8(4), 14-38. https://doi.org/10.1109/79.91217.
  53. Russo, A.D., Sica, S., Del Gaudio, S., De Matteis, R. and Zollo, A. (2017), "Near-source effects on the ground motion occurred at the Conza Dam site (Italy) during the 1980 Irpinia earthquake", Bull. Earthq. Eng., 15(10), 4009-4037. https://doi.org/10.1007/s10518-017-0138-2.
  54. Salajegheh, E. and Heidari, A. (2005a), "Optimum design of structures against earthquake by wavelet neural network and filter banks", Earthq. Eng. Struct. Dyn., 34(1), 67-82. https://doi.org/10.1002/eqe.417.
  55. Salajegheh, E. and Heidari, A. (2005b), "Time history dynamic analysis of structures using filter banks and wavelet transforms", Comput. Struct., 83(1), 53-68. https://doi.org/10.1016/j.compstruc.2004.08.008.
  56. Salajegheh, E., Heidari, A. and Saryazdi, S. (2005), "Optimum design of structures against earthquake by discrete wavelet transform", Int. J. Numer. Meth. Eng., 62(15), 2178-2192. https://doi.org/10.1002/nme.1279.
  57. Shakarami, L., Javdanian, H., Zarif Sanayei, H.R. and Shams, G. (2019), "Numerical investigation of seismically induced crest settlement of earth dams", Model. Earth Syst. Environ., 5(4), 1231-1238. https://doi.org/10.1007/s40808-019-00624-9.
  58. Sharafi, H. and Maleki, Y.S. (2019), "Evaluation of hazardous effects of near-fault earthquakes on earth dams by using EL and TNL numerical methods (case studies: Gheshlagh Oleya and Jamishan dams)", Nat. Hazards, 98(2), 451-484. https://doi.org/10.1007/s11069-019-03702-4.
  59. Smyrou, E., Bal, I.E., Tasiopoulou, P. and Gazetas, G. (2016), "Wavelet analysis for relating soil amplification and liquefaction effects with seismic performance of precast structures", Earthq. Eng. Struct. Dyn., 45(7), 1169-1183. https://doi.org/10.1002/eqe.2701.
  60. Sonmezer, Y.B. and Celiker, M. (2020), "Determination of seismic hazard and soil response of a critical region in Turkey considering far field and near field earthquake effect", Geomech. Eng., 20(2), 131-146. https://doi.org/10.12989/gae.2020.20.2.131.
  61. Sonmezer, Y.B., Bas, S., Isik, N.S. and Akbas, S.O. (2018), "Linear and nonlinear site response analyses to determine dynamic soil properties of Kirikkale", Geomech. Eng., 16(4), 435-448. https://doi.org/10.12989/gae.2018.16.4.435.
  62. Sonmezer, Y.B., Celiker, M. and Bas, S. (2019), "An investigation on the evaluation of dynamic soil characteristics of the Elazig City through the 1-D equivalent linear site-response analysis", Bull. Eng. Geol. Environ., 78(7), 4689-4712. https://doi.org/10.1007/s10064-018-01450-6.
  63. Strang, G. and Nguyen, T. (1996), Wavelets and Filter Banks, Wellesley-Cambridge Press, 514.
  64. Suarez, L.E. and Montejo, L.A. (2007), "Applications of the wavelet transform in the generation and analysis of spectrumcompatible records", Struct. Eng. Mech., 27(2), 173-197. https://doi.org/10.12989/sem.2007.27.2.173.
  65. Terzi, N.U. and Selcuk, M.E. (2015), "Nonlinear dynamic behavior of pamukcay earthfill dam", Geomech. Eng., 9(1), 83-100. https://doi.org/10.12989/gae.2015.9.1.083.
  66. To, A.C., Moore, J.R. and Glaser, S.D. (2009), "Wavelet denoising techniques with applications to experimental geophysical data", Signal Process., 89(2), 144-160. https://doi.org/10.1016/j.sigpro.2008.07.023.
  67. Uddin, N. (1999), "A dynamic analysis procedure for concretefaced rockfill dams subjected to strong seismic excitation", Comput. Struct., 72(1-3), 409-421. https://doi.org/10.1016/S0045-7949(99)00011-5.
  68. Wang, J., Yang, G., Liu, H., Nimbalkar, S.S., Tang, X. and Xiao, Y. (2017), "Seismic response of concrete-rockfill combination dam using large-scale shaking table tests", Soil Dyn. Earthq. Eng., 99, 9-19. https://doi.org/10.1016/j.soildyn.2017.04.015.
  69. Xu, B., Zou, D., Kong, X., Hu, Z. and Zhou, Y. (2015), "Dynamic damage evaluation on the slabs of the concrete faced rockfill dam with the plastic-damage model", Comput. Geotech., 65, 258-265. https://doi.org/10.1016/j.compgeo.2015.01.003.
  70. Yao, Y., Wang, R., Liu, T. and Zhang, J.M. (2019), "Seismic response of high concrete face rockfill dams subjected to nonuniform input motion", Acta Geotech., 14(1), 83-100. https://doi.org/10.1007/s11440-018-0632-y.
  71. Zou, D., Xu, B., Kong, X., Liu, H. and Zhou, Y. (2013), "Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model", Comput. Geotech., 49, 111-122. https://doi.org/10.1016/j.compgeo.2012.10.010.

Cited by

  1. Seismic fragility analysis of a cemented Sand-gravel dam considering two failure modes vol.26, pp.6, 2020, https://doi.org/10.12989/cac.2020.26.6.483