DOI QR코드

DOI QR Code

Complex analysis of rock cutting with consideration of rock-tool interaction using distinct element method (DEM)

  • Received : 2019.10.28
  • Accepted : 2020.02.07
  • Published : 2020.03.10

Abstract

Cutting of rocks is very common encountered in tunneling and mining during underground excavations. A deep understanding of rock-tool interaction can promote industrial applications significantly. In this paper, a distinct element method based approach, PFC3D, is adopted to simulate the rock cutting under different operation conditions (cutting velocity, depth of cut and rake angle) and with various tool geometries (tip angle, tip wear and tip shape). Simulation results showed that the cutting force and accumulated number of cracks increase with increasing cutting velocity, cut depth, tip angle and pick abrasion. The number of cracks and cutting force decrease with increasing negative rake angle and increase with increasing positive rake angle. The numerical approach can offer a better insight into the rock-tool interaction during the rock cutting process. The proposed numerical method can be used to assess the rock cuttability, to estimate the cutting performance, and to design the cutter head.

Keywords

Acknowledgement

Supported by : National Nature Science Foundation of China, Natural Science Foundation of Guangdong, Central Universities, Chinese Scholarship Council (CSC)

This work was supported by the National Nature Science Foundation of China (51904359), Natural Science Foundation of Guangdong (2020A151501528) and the Fundamental Research Funds for the Central Universities (19lgzd41). The first author would like to thank the Chinese Scholarship Council (CSC) (201408080085) for its financial support. Special thanks to Mr. Qiaofeng Ni and Mr. Mingzhi Zheng at TU Bergakademie Freiberg in constructing the cutting tools.

References

  1. Balci, C. and Bilgin, N. (2007), "Correlative study of linear small and full-scale rock cutting tests to select mechanized excavation machines", Int. J. Rock Mech. Min. Sci., 44(3), 468-476. https://doi.org/10.1016/j.ijrmms.2006.09.001.
  2. Bilgin, N., Demircin, M.A., Copur, H., Balci, C., Tuncdemir, H. and Akcin, N. (2006), "Dominant rock properties affecting the performance of conical picks and the comparison of some experimental and theoretical results", Int. J. Rock Mech. Min. Sci., 43(1), 139-156. https://doi.org/10.1016/j.ijrmms.2005.04.009.
  3. Chang, S., Lee, C., Kang, T.H., Ha, T. and Choi, S.W. (2017), "Effect of hardfacing on wear reduction of pick cutters under mixed rock conditions", Geomech. Eng., 13(1), 141-159. https://doi.org/10.12989/gae.2017.13.1.141.
  4. Cundall, P.A. (1971), "A computer model for simulating progressive large scale movements in blocky rock system", Proceeding of the Symposium of the International Society of Rock Mechanics, Nancy, France, September.
  5. Cundall, P.A. (1988), "Formulation of a three-dimensional distinct element model - Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks", Int. J. Rock Mech. Min. Sci. Geomech., 25(3), 107-116. https://doi.org/10.1016/01489062(88)91214-4.
  6. Cundall, P.A. and Hart, R. (1992), "Numerical modeling of discontinua", Eng. Comput., 9, 101-113. https://doi.org/10.1016/B978-0-08-040615-2.50015-0.
  7. Dang, W., Konietzky, H. and Li, X. (2019), "Frictional responses of concrete-to-concrete bedding planes under complex loading conditions", Geomech. Eng., 17(3), 253-259. https://doi.org/10.12989/gae.2019.17.3.253.
  8. Ding, X., Zhang, L., Zhu, H. and Zhang, Q. (2014), "Effect of model scale and particle size distribution on PFC3D simulation results", Rock Mech. Rock Eng., 47(6), 2139-2156. https://10.1007/s00603-013-0533-1.
  9. Duan, K., Ji, Y., Wu, W. and Kwok, C.Y. (2019), "Unloading-induced failure of brittle rock and implications for excavation-induced strain burst", Tunn. Undergr. Sp. Technol., 84, 495-506. https://doi.org/10.1016/j.tust.2018.11.012.
  10. Evans, I. (1984), "A theory of the cutting force of point-attack picks", Int. J. Min. Eng., 2(1), 63-71. https://doi.org/10.1007/bf00880858.
  11. Fowell, R.J., Richardson, G. and Gollick, M.J. (1994), "Prediction of boom tunneling machine excavation rates", Proceeding of the 1st North American Rock Mechanics Symposium, Austin, Texas, U.S.A., June.
  12. Goektan, R.M. (1990), "Effect of cutter pick rake angle on the failure pattern of high-strength rocks", Min. Sci. Technol., 11(3), 281-285. https://doi.org/10.1016/0167-9031(90)90981-w.
  13. Gray, K.E., Armstrong, F. and Gatlin, C. (1962), "Two-dimensional study of rock breakage in drag-bit drilling at atmospheric pressure", J. Petrol. Technol., 14(1), 93-98. https://doi.org/10.2118/164-pa.
  14. Guo, H., Aziz, N.I. and Schmidt, L.C. (1992), "Rock cutting study using linear elastic fracture mechanics", Eng. Fract. Mech., 41(5), 771-778. https://doi.org/10.1016/0013-7944(92)90159-c.
  15. Hart, R.D., Cundall, P.A. and Lemos, J. (1988), "Formulation of a three-dimensional distinct element model - Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks", Int. J. Rock Mech. Min. Sci. Geomech., 25(3), 117-125. https://doi.org/10.1016/0148-9062(88)92294-2.
  16. Huang, H., Lecampion, B. and Detournay, E. (2013), "Discrete element modeling of tool-rock interaction I: Rock cutting", Int. J. Rock Mech. Min. Sci. Geomech., 37, 1913-1929. https://doi.org/10.1002/nag.2113.
  17. Hurt, K.G. and MacAndrew, K.M. (1985), "Cutting efficiency and life of rock cutting picks", Min. Sci. Tech., 2, 139-151. https://doi.org/10.1016/s0167-9031(85)90357-3.
  18. Itasca (2016), PFC3D Version 5.0, Itasca Consulting Group, Minneapolis, Minnesota, U.S.A.
  19. Jeong, H. and Jeon, S. (2018), "Characteristic of size distribution of rock chip produced by rock cutting with a pick cutter", Geomech. Eng., 15(3), 811-822. https://doi.org/10.12989/gae.2018.15.3.811.
  20. Kwok, C., Duan, K. and Pierce, M. (2019) "Modeling hydraulic fracturing in jointed shale formation with the use of fully coupled discrete element method", Acta Geotech., 15(1), 245-264. https://doi.org/10.1007/s11440-019-00858-y.
  21. Lei, S., Kaitkay, P. and Shen, X. (2014), "Simulation of rock cutting using distinct element method - PFC2D", Proceeding of the 2nd International PFC Symposium, Kyoto, Japan, October.
  22. Lei, S.T. and Kaitkay, P. (2003), "Distinct element modeling of rock cutting under hydrostatic pressure", Key Eng. Mater., 250, 110-117. https://doi.org/10.4028/www.scientific.net/kem.250.110.
  23. Li, Y., Sun, S. and Tang, C. (2019), "Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis", Rock Mech. Rock Eng., 52, 1-13. https://doi.org/10.1007/s00603-019-01817-5.
  24. Lunow, C. and Konietzky, H. (2012), "Two dimensional and three dimensional simulation of rock cutting processes", Proceedings of the Freiberg High-Pressure Symposium, Freiberg, Germany, October.
  25. McFeat-Smith, I. and Fowell, R.J. (1977), "Correlation of rock properties and the cutting performance of tunneling machines", Proceeding of the Conference on Rock Engineering, Newcastle upon Tyne, U.K.
  26. Menezes, P.L., Lovell, M.R., Avdeev, I.V. and Fred Higgs III, C. (2014), "Studies on the formation of discontinuous rock fragments during cutting operation", Int. J. Rock Mech. Min. Sci., 71, 131-142. https://doi.org/10.1016/j.ijrmms.2014.03.019.
  27. Nishimatsu, Y. (1972), "The mechanics of rock cutting", Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 9(2), 261-270. https://doi.org/10.1016/0148-9062(72)90027-7.
  28. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41(8), 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011.
  29. Rojek, J., Onate, E., Labra, C. and Kargl, H. (2011), "Discrete element simulation of rock cutting", Int. J. Rock Mech. Min. Sci., 48(6), 996-1010. https://doi.org/10.1016/j.ijrmms.2010.08.012.
  30. Sarwary, E. and Hagan, P.C. (2016), "The effect of changes in tool tip angle on the cutting performance of a pointed pick", Min. Technol., 125(3), 184-190. https://doi.org/10.1080/14749009.2016.1159056.
  31. Shang, J., Zhao, Z. and Ma, S. (2018), "On the shear failure of incipient rock discontinuities under CNL and CNS boundary conditions: insights from DEM modeling", Eng. Geol., 234, 153-166. https://doi.org/10.1016/j.enggeo.2018.01.012.
  32. Shang J. (2020), "Rupture of veined granite in polyaxial compression: Insights from three-dimensional discrete element method modelling", J. Geophys. Res. Solid Earth. https://doi.org/10.1029/2019JB019052.
  33. Shang J., Zhao Z., Hu J. and Handley K. (2018) "3D particle-based DEM investigation into the shear behaviour of incipient rock joints with various geometries of rock bridges", Rock Mech. Rock Eng., 51(11), 3563-3584. https://doi.org/10.1007/s00603-018-1531-0.
  34. Su, O. and Akcin, N.A. (2011), "Numerical simulation of rock cutting using the discrete element method", Int. J. Rock Mech. Min. Sci., 48, 434-442. https://doi.org/10.1016/j.ijrmms.2010.08.012.
  35. Tan, Y.Q., Yang, D.M. and Sheng, Y. (2009), "Discrete element method (DEM) modeling of fracture and damage in the machining process of polycrystalline SiC", J. Eur. Ceramic Soc., 29(6), 1029-1037. https://doi.org/10.1016/j.jeurceramsoc.2008.07.060.
  36. Thuro, K. (1996), "Bohrbarkeit beim konventionellen Sprengvortrieb. Geologisch-felsmechanische Untersuchungen anhand sieben ausgewahlter Tunnelprojekte", Ph.D. Dissertation, Technische Universitat Munchen, Munchen, Germany.
  37. Van Wyk, G., Els, D.N.J., Akdogan, G., Bradshaw, S.M. and Sacks, N. (2014), "Discrete element simulation of tribological interactions in rock cutting", Int. J. Rock Mech. Min. Sci., 65, 8-19. https://doi.org/10.1016/j.jeurceramsoc.2008.07.060.
  38. Verhoef, P.N.W. (1997), "Wear of rock cutting tools: implications for the site investigation of rock dredging projects", Ph.D. Dissertation, Technical University Delft, Delft, The Netherlands.
  39. Wang, S., Huang, L. and Li, X. (2020), "Analysis of rockburst triggered by hard rock fragmentation using a conical pick under high uniaxial stress", Tunn. Undergr. Sp. Technol., 96, 103195. https://doi.org/10.1016/j.tust.2019.103195.
  40. Yang, X.Q., Zhang, L.J. and Ji, X.M. (2013), "Strength characteristics of transversely isotropic rock materials", Geomech. Eng., 15(1), 71-86. https://doi.org/10.12989/gae.2013.5.1.071.
  41. Zhu, X., Liu, W. and Lv, Y. (2017), "The investigation of rock cutting simulation based on discrete element method", Geomech. Eng., 13(6), 977-995. https://doi.org/10.12989/gae.2017.13.6.977.