DOI QR코드

DOI QR Code

Prediction and assessment of nonlocal natural frequencies of DWCNTs: Vibration analysis

  • Asghar, Sehar (Department of Mathematics, Govt. College University Faisalabad) ;
  • Naeem, Muhammad N. (Department of Mathematics, Govt. College University Faisalabad) ;
  • Hussain, Muzamal (Department of Mathematics, Govt. College University Faisalabad) ;
  • Taj, Muhammad (Department of Mathematics, University of Azad Jammu and Kashmir) ;
  • Tounsi, Abdelouahed (Materials and Hydrology Laboratory, University of SidiBel Abbes, Algeria Faculty of Technology Civil Engineering Department)
  • Received : 2019.12.17
  • Accepted : 2020.01.30
  • Published : 2020.02.25

Abstract

This paper aims to study vibration characteristics of chiral and zigzag double-walled carbon nanotubes entrenched on Donnell shell model. The Eringen's nonlocal elastic equations are being combined with Donnell shell theory to observe small scale response. Wave propagation is proposed technique to establish field equations of model subjected to four distinct end supports. A nonlocal model has been formulated to explore the frequency spectrum of both chiral and zigzag double-walled CNTs along with diversity of indices and nonlocal parameter. The significance of scale effect in relevance of length-to-diameter and thickness- to- radius ratios are discussed and displayed in detail. The numerical solution based on this nonlocal Donnell shell model can be further used to predict other frequency phenomena of double-walled and multi-walled CNTs.

Keywords

References

  1. Ansari, R. and Rouhi, H. (2012), "Nonlocal analytical Flugge shell model for the axial buckling of double-walled carbon nanotubes with different end conditions", Int. J. Nano Dimens., 7(3), 1250081. https://doi.org/10.1142/S179329201250018X.
  2. Ansari, R., Rouhi, H. and Arash, B. (2013), "Vibration analysis of double-walled carbon nanotubes based on the nonlocal donnell shell via a new numerical approach", Int. J. Sci. Technol. Tran. B: Eng., 37, 91-105.
  3. Asghar, S., Hussain, M. and Naeem, M. (2019a), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E: Low Dimens. Syst. Nanostr., 116, 113726. https://doi.org/10.1016/j.physe.2019.113726.
  4. Asghar, S., Hussain, M. and Naeem, M.N. (2019b), "Non-local effect on the vibration analysis of double walled carbon nanotubes based on Donnell shell theory", Physica E: Low Dimens. Syst. Nanostr., 116, 11326. https://doi.org/10.1016/j.physe.2019.113726.
  5. Avcar, M. (2019), "Free vibration of imperfect sigmoid and power law functionally graded beams", Steel Compos. Struct., 30(6), 603-615. https://doi.org/10.12989/scs.2019.30.6.603.
  6. Aydogdu, M. (2009), "A general nonlocal beam theory: Its application to nanobeam bending, buckling and vibration", Physica E, 41, 1651-1655. https://doi.org/10.1016/j.physe.2009.05.014.
  7. Batou, B., Nebab, M., Bennai, R., Atmane, H.A., Tounsi, A. and Bouremana, M. (2019), "Wave dispersion properties in imperfect sigmoid plates using various HSDTs", Steel Compos. Struct., 33(5), 699-716. https://doi.org/10.12989/scs.2019.33.5.699.
  8. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale effects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B: Eng., 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020.
  9. Bisen, H.B., Hirwani, C.K., Satankar, R.K., Panda, S.K., Mehar, K. and Patel, B. (2018), "Numerical study of frequency and deflection responses of natural fiber (Luffa) reinforced polymer composite and experimental validation", J. Nat. Fib., 1-15. https://doi.org/10.1080/15440478.2018.1503129.
  10. Bouazza, M., Amara, K., Zidour, M., Tounsi, A. and El Abbas, A.B. (2014), "Thermal effect on buckling of multiwalled carbon nanotubes using different gradient elasticity theories", Nanosci. Nanotechnol., 4(2) 27-33. https://doi.org/10.5923/j.nn.20140402.02.
  11. Brischetto, S. (2014), "A continuum elastic three-dimensional model for natural frequencies of single walled carbon nanotubes", Compos. Part B: Eng., 61, 222-228. https://doi.org/10.1016/j.compositesb.2014.01.046.
  12. Chang, T., Li, G. and Gua, X. (2005), "Elastic axial buckling of carbon nanotubes via molecular mechanics model", Carbon, 43, 287-294. https://doi.org/10.1016/j.carbon.2004.09.012.
  13. Chang, W.J. and Lee, H.L. (2009), "Free vibration of single-walled carbon nanotubes containing a fluid flow using a Timoshenko beam model", Phys. Lett. A, 373(10), 982-985. https://doi.org/10.1016/j.physleta.2009.01.011.
  14. Chemi, A., Heireche, H., Zidour, M., Rakrak, K. and Bousahla, A.A. (2015), "Critical buckling load chiral double-walled carbon nanotubes using non-local elasticity theory", Adv. Neno Res., 3(4), 193-206. https://doi.org/10.12989/anr.2015.3.4.193.
  15. Cornwell, C.F and Wille, L.T. (1997), "Elastic properties of single-walled carbon nanotubes in compression", Solid State Commun., 101(8), 555-558. https://doi.org/10.1016/S0038-1098(96)00742-9.
  16. Ebrahimi, F., Barati, M.R. and Mahesh, V. (2019), "Dynamic modeling of smart magneto-electro-elastic curved nanobeams", Adv. Nano Res., 7(3), 145-155. https://doi.org/10.12989/anr.2019.7.3.145.
  17. Eltaher, M., Emam, S.A. and Mahmoud, F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  18. Eltaher, M.A., Eman, S.A. and Mahmoud, F.F. (2013), "Static and stability analysis of nonlocal functionally graded nanobeams", Compos. Struct., 96, 82-88. https://doi.org/10.1016/j.compstruct.2012.09.030.
  19. Eringen, A.C. (1972), "Nonlocal polar elastic continua", Int. J. Eng. Sci., 10(1), 1-16. https://doi.org/10.1016/0020-7225(72)90070-5.
  20. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54, 4703-4710. https://doi.org/10.1063/1.332803.
  21. Eringen, A.C. (2002), Nonlocal Continuum Field Theories, Springer Science and Business Media, New York.
  22. Fatahi-Vajari, A., Azimzadeh, Z. and Hussain. M. (2019), "Nonlinear coupled axial-torsional vibration of single-walled carbon nanotubes using Galerkin and Homotopy perturbation method", Micro Nano Lett., 14(14), 1366-1371. https://doi.org/10.1049/mnl.2019.0203.
  23. Ghavanloo, E. and Fazelzadeh, S.A. (2009), "Vibrations characteristics of single walled carbon nanotubes based on the nonlocal Flugge shell theory". ASME J. Eng. Mater. Technol., 134, 011008. https://doi.org/10.1016/j.apm.2011.12.036.
  24. Gohardani, O., Elola, M.C. and Elizetxea, C. (2014), "Potential and prospective implementation of carbon nanotubes on next generation aircraft and space vehicle: A review of current and expected applications in aerospace sciences", Prog. Aerosp. Sci., 70, 42-68. https://doi.org/10.1016/j.paerosci.2014.05.002.
  25. Hao, X., Qiang, H. and Xiaouh, Y. (2008), "Buckling of defective single-walled and double-walled carbon nanotubes under axial compression by molecular dynamic simulation", Compos. Sci. Technol., 68(7-8), 1809-1814. https://doi.org/10.1016/j.compscitech.2008.01.013.
  26. Hashemi, S.H., Ilkhani, M.R. and Fadaee, M. (2012), "Identification of the validity of the Donnell and Sanders shell theories using an exact vibration analysis of the functionally graded thick cylindrical shell panel", Acta Mechanica, 223(5), 1101-1118. https://doi.org/10.1007/s00707-011-0601-0.
  27. Heireche, H., Tounsi, A., Benzair, A., Maachou, M. and AddaBedia, E.A. (2008), "Sound wave propagation in single-walled carbon nanotubes using nonlocal elasticity", Physica E: Low Dimens. Syst. Nanostr., 40(8), 2791-2799. https://doi.org/10.1016/j.physe.2007.12.021.
  28. Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotubes", Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034.
  29. Hu, Y.G., Liew, K.M. and Wang, Q. (2012), "Modeling of vibrations of carbon nanotube"s, Procedia Eng., 31, 343-347. https://doi.org/10.1016/j.proeng.2012.01.1034.
  30. Hu, Y.G., Liew, K.M., Wang, Q., He, X.Q. and Yakobson, B.I. (2008), "Nonlocal shell model for elastic wave propagation in single- and double-walled carbon nanotubes", J. Mech. Phys. Solid., 56(12), 3475-3485. https://doi.org/10.1016/j.jmps.2008.08.010.
  31. Hussain, M. and Naeem, M. (2018b), "Vibration of single-walled carbon nanotubes based on Donnell shell theory using wave propagation approach", Novel Nanomater. Synth. Appl., 18, 77. https://doi.org/10.5772/intechopen.73503.
  32. Hussain, M. and Naeem, M. (2019c), "Rotating response on the vibrations of functionally graded zigzag and chiral single walled carbon nanotubes", Appl. Math. Model., 75, 506-520. https://doi.org/10.1016/j.apm.2019.05.039.
  33. Hussain, M. and Naeem, M.N. (2017), "Vibration analysis of single-walled carbon nanotubes using wave propagation approach", Mech. Sci., 8(1), 155-164. https://doi.org/10.5194/ms-8-155-2017.
  34. Hussain, M. and Naeem, M.N. (2018a), "Effect of various edge conditions on free vibration characteristics of rectangular plates", Advance Testing and Engineering.
  35. Hussain, M. and Naeem, M.N. (2019), "Vibration characteristics of single-walled carbon nanotubes based on nonlocal elasticity theory using Wave Propagation Approach (WPA) Including Chirality", Perspective of Carbon Nanotubes. http://dx.doi.org/10.5772/intechopen.85948.
  36. Hussain, M. and Naeem, M.N. (2019a), "Effects of ring supports on vibration of armchair and zigzag FGM rotating carbon nanotubes using Galerkin's method", Compos. Part B. Eng., 163, 548-561. https://doi.org/10.1016/j.compositesb.2018.12.144.
  37. Hussain, M. and Naeem, M.N. (2019b), "Vibration characteristics of zigzag and chiral FGM rotating carbon nanotubes sandwich with ring supports", J. Mech. Eng. Sci., Part C, 233(16), 5763-5780. https://doi.org/10.1177/0954406219855095.
  38. Hussain, M., Naeem, M., Shahzad, A. and He, M, (2018a), "Vibration characteristics of fluid-filled functionally graded cylindrical material with ring supports", Comput Fluid Dyn Basic Instrum Appl Sci., 333. https://doi.org/10.5772/intechopen.72172.
  39. Hussain, M., Naeem, M.N. and Isvandzibaei, M. (2018c), "Effect of Winkler and Pasternak elastic foundation on the vibration of rotating functionally graded material cylindrical shell", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(24), 4564-4577. https://doi.org/10.1177/0954406217753459.
  40. Hussain, M., Naeem, M.N. and Taj, M. (2019b), "Effect of length and thickness variations on the vibration of SWCNTs based on Flugge's shell model", Micro Nano Lett., 15(1), 1-6. https://doi.org/10.1049/mnl.2019.0309, 2019.
  41. Hussain, M., Naeem, M.N., Shahzad, A, He, M. and Habib, S. (2018b), "Vibrations of rotating cylindrical shells with FGM using wave propagation approach", IMechE Part C: J. Mech. Eng. Sci., 232(23), 4342-4356. https://doi.org/10.1177/0954406218802320
  42. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2019a), "Nonlocal effect on the vibration of armchair and zigzag SWCNTs with bending rigidity", Adv. Nano Res., 7(6), 431. https://doi.org/10.12989/anr.2019.7.6.431.
  43. Hussain, M., Naeem, M.N., Tounsi, A. and Taj, M. (2020), "Simulating vibration of single-walled carbon nanotube using Rayleigh-Ritz's method", Adv. Nano Res., 8(3).
  44. Hussain, M., Naeem., M.N., Shahzad, A. and He, M. (2017), "Vibrational behavior of single-walled carbon nanotubes based on cylindrical shell model using wave propagation approach", AIP Adv., 7(4), 045114. https://doi.org/10.1063/1.4979112.
  45. Jamali, M., Shojaee, T., Mohammadi, B. and Kolahchi, R. (2019), "Cut out effect on nonlinear post-buckling behavior of FG-CNTRC micro plate subjected to magnetic field via FSDT", Adv. Nano Res., 7(6), 405-417. https://doi.org/10.12989/anr.2019.7.6.405.
  46. Jorio, A., Saito, R., Hafner, J.H., Lieber, C.M., Hunter, M., McClure, T., Dresselhaus, G. and Dresselhaus, M.S. (2001), "Structural (n,m) determination of isolated single-wall carbon nanotubes by resonant raman scattering", Phys. Rev. Lett., 86(6) 1118-1121. https://doi.org/10.1103/PhysRevLett.86.1118.
  47. Jung, N.Y. and Han, S.C. (2013), "Analysis of sigmoid functionally materials (S-FGM) nanoscale plates using nonlocal elasticity theory", Math. Prob. Eng., 476131. http://dx.doi.org/10.1155/2013/476131
  48. Karami, B., Janghorban, M., Shahsavari, D., Dimitri, R., & Tornabene, F. (2019), "Nonlocal buckling analysis of composite curved beams reinforced with functionally graded carbon nanotubes", Molecul., 24, 2750, https://doi.org/10.3390/molecules24152750.
  49. Kasas, S., Cibert, C., Kis, A., De Rios, P.L., Riederer, B.M., Forro, L., Dietler, G. and Catsicas, S. (2004), "Oscillation modes of microtubules", Biology Cell, 96(9), 697-700. https://doi.org/10.1016/j.biolcel.2004.09.002.
  50. Ke, L.L., Xiang, Y., Yang, J. and Kitipornchai, S. (2009), "Non linear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory", Comput. Mater. Sci., 47(2), 409-417. https://doi.org/10.1016/j.commatsci.2009.09.002.
  51. Kolohchi, R., Bidholi, M.M. and Heydari, M.M. (2015), "Size-dependent bending analysis of FGM nano-sinusoidal plates resting on orthotropic elastic medium", Struct. Eng. Mech., 55, 1001-1014. http://dx.doi.org/10.12989/sem.2015.55.5.1001.
  52. Kostarelos, K., Bianco, A. and Prato, M. (2009), "Promises, facts and challenges for carbon nanotubes in imaging and therapeutics", Nat. Nanotechnol., 4(10), 627-633. https://doi.org/10.1038/nnano.2009.241.
  53. Lau, K.T. and Hui, D. (2002), "The revolutionary creation of new advanced materials-carbon nanotube composites", Compos. Part B: Eng., 33(4), 263-277. https://doi.org/10.1016/S1359-8368(02)00012-4.
  54. Li, R. and Kardomateas, G.A. (2007) "Vibration characteristics of multiwalled carbon nanotubes embedded in elastic media by a nonlocal elastic shell model", J. Appl. Mech., 74(6), 1087-1094. https://doi.org/10.1115/1.2722305.
  55. Lieber, C.M. (2003), "Nanoscale science and technology building", MRS Bulletin. https://doi.org/10.1557/mrs2003.144.
  56. Liew, K.M., Wong, C.H., He, X.Q. and Tan, M.J. (2005), "Thermal stability of single and multi-walled carbon nanotubes", Phys. Rev B, 71, 075424. https://doi.org/10.1103/PhysRevB.71.075424.
  57. Liu, L. and Zang, Y. (2004), "Multi-wall carbon nanotubes as a new infrared detected material", Sens. Actu. A: Phys., 116(3), 394-339. https://doi.org/10.1016/j.sna.2004.05.016.
  58. Lu, Y.J., Wang, X. and Lu, G. (2007), "Buckling of embedded multi-walled carbon nanotubes under combined torsion and axial loading", Int. J. Solid. Struct., 44(1), 336-351. https://doi.org/10.1016/j.ijsolstr.2006.04.031.
  59. Mehar, K. and Kumar Panda, S. (2018), "Thermal free vibration behavior of FG-CNT reinforced sandwich curved panel using finite element method", Polym. Compos., 39(8), 2751-2764. https://doi.org/10.1002/pc.24266.
  60. Mehar, K. and Panda, S.K. (2019), "Multiscale modeling approach for thermal buckling analysis of nanocomposite curved structure", Adv. Nano Res., 7(3), 181. https://doi.org/10.12989/anr.2019.7.3.181.
  61. Mehar, K., Mahapatra, T.R., Panda, S.K., Katariya, P.V. and Tompe, U.K. (2018), "Finite-element solution to nonlocal elasticity and scale effect on frequency behavior of shear deformable nanoplate structure", J. Eng. Mech., 144(9), 04018094. https://doi.org/10.1061/(ASCE)EM.1943-7889.0001519.
  62. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017a), "Thermoelastic nonlinear frequency analysis of CNT reinforced functionally graded sandwich structure", Eur. J. Mech. A/Solid., 65, 384-396. https://doi.org/10.1016/j.euromechsol.2017.05.005.
  63. Mehar, K., Panda, S.K. and Mahapatra, T.R. (2017b), "Theoretical and experimental investigation of vibration characteristic of carbon nanotube reinforced polymer composite structure", Int. J. Mech. Sci., 133, 319-329. https://doi.org/10.1016/j.ijmecsci.2017.08.057.
  64. Mehar, K., Panda, S.K. and Patle, B.K. (2018), "Stress, deflection, and frequency analysis of CNT reinforced graded sandwich plate under uniform and linear thermal environment: A finite element approach", Polym. Compos., 39(10), 3792-3809. https://doi.org/10.1002/pc.24409.
  65. Mehar, K., Panda, S.K., Dehengia, A. and Kar, V.R. (2016), "Vibration analysis of functionally graded carbon nanotube reinforced composite plate in thermal environment", J. Sandw. Struct. Mater., 18(2), 151-173. https://doi.org/10.1177/1099636215613324.
  66. Mori, H., Hirai, Y., Ogata, S., Akita, S. and Nakayama, Y. (2005), "Chirality dependence of mechanical properties of single walled cabon nanotubes under axial tensile strain", JPN J. Appl. Phys., 44(2), 42-45. https://doi.org/10.1143/JJAP.44.L1307.
  67. Mumrmu, T. and Pradhan, S.C. (2010), "Thermal effects on the stability of embedded carbon nanotubes", Comput. Mater. Sci., 47(3), 721-726. https://doi.org/10.1016/j.commatsci.2009.10.015.
  68. Nejad, M.Z., Hadi, A. and Rastgoo, A. (2016), "Buckling analysis of arbitrary two-directional functionally graded Euler-Bernonllinano-beams based on non-local elasticity theory", Eng. Sci., 103, 1-10. https://doi.org/10.1016/j.ijengsci.2016.03.001.
  69. Nogales, E. (2001), "Structural insights into microtubule function", Ann. Rev. Biophys. Biomol. Struct., 30(1), 397-420. https://doi.org/10.1146/annurev.biophys.30.1.397.
  70. Pradhan, S.C. and Reddy, G.K. (2011), "Thermo mechanical buckling analysis of carbon nanotubes on Winkler foundation using non-local elasticity theory and DTM", Sadhana, 36(6), 1009-1019. https://doi.org/10.1007/s12046-011-0052-2.
  71. Rafiee, R. and Moghadam, R.M. (2014), "On the modeling of carbon nanotubes: A critical review", Compos. Part B: Eng., 56, 435-449. https://doi.org/10.1016/j.compositesb.2013.08.037.
  72. Rakrak, K., Zidour, M., Heireche, H., Bousahla, A.A. and Chemi, A. (2016), "Free vibration analysis of chiral double-walled carbon nanotube using non-local elasticity theory", Adv. Nano Res., 4(1), 31-44. http://dx.doi.org/10.12989/anr.2016.4.1.031.
  73. Reddy, J.N. (2007), "Nonlocal theories for bending, buckling and vibration of beams", Int. J. Eng. Sci., 45, 288-307. https://doi.org/10.1016/j.ijengsci.2007.04.004.
  74. Regi, M. (2007), "6-synthesis, characteristics and applications of carbon nanotubes: the case of aerospace engineering", Nanofib. Nanotech. Textil., 113-193. https://doi.org/10.1533/9781845693732.2.113.
  75. Reilly, R.M. (2007), "Carbon nanotubes: Potential benefits and risks of nanotechnology in nuclear medicine", J. Nucl. Med., 48(7), 1039-1042. http://doi.org/10.2967/jnumed.107.041723.
  76. Salah, F., Boucham, B., Bourada, F., Benzair, A., Bousahla, A.A. and Tounsi, A. (2019), "Investigation of thermal buckling properties of ceramic-metal FGM sandwich plates using 2D integral plate model", Steel Compos. Struct., 32(5), 595-610. https://doi.org/10.12989/scs.2019.33.6.805.
  77. Sharma, P., Singh, R. and Hussain, M. (2019), "On modal analysis of axially functionally graded material beam under hygrothermal effect", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci. 10.1177/0954406219888234, 2019.
  78. Soldano, C. (2015), "Hybrid metal-based carbon nanotubes: Novel platform for multifunctional applications", Prog. Mater. Sci., 69, 183-212. https://doi.org/10.1016/j.pmatsci.2014.11.001.
  79. Sosa, E.D., Darlington, T.K., Hanos, B.A. and O'Rourke, M.J.E. (2014), "Multifunctional thermally remendable nanocomposites", J. Compos., Article ID 705687, 12. http://dx.doi.org/10.1155/2014/705687.
  80. Wang, C.M., Ma, Y.Q., Zhang, Y.Y. and Ang, K.K. (2006), "Buckling of double-walled carbon nanotubes modeled by solid shell elements", J. Appl. Phys., 99(11), 114317-114312. https://doi.org/10.1063/1.2202108.
  81. Wang, Q. and Liew, K.M. (2007), "Application of nonlocal continuum mechanics to static analysis of micro-and nano-structures", Phys. Lett. A, 363, 236-242. https://doi.org/10.1016/j.physleta.2006.10.093.
  82. Xu, K.Y., Aifantis, E.C. and Yan, Y.H. (2008), "Vibrations of double walled carbon nanotubes with different boundary conditions between inner and outer tubes", J. Appl. Mech., 75(2), 021013. https://doi.org/10.1115/1.2793133.
  83. Zhang, Y.Q., Liu, G.R. and Xie, X.Y. (2005), "Free transverse vibrations of double-walled carbon nanotubes using a theory of nonlocal elasticity", Phys. Rev. B, 71(19), 195404. https://doi.org/10.1103/PhysRevB.71.195404.
  84. Zhao, J., Buldum, A., Lu, J.P. and Han, J. (2002), "Gas molecule adsorption in carbon nanotubes and nanotubes bundles", Nanotechnol., 13(2), 195. https://doi.org/10.1088/0957-4484/13/2/312
  85. Zidour, M., Benrahou, K., Semmah, A.W., Naceri, M., Belhadj, H.A., Bakhti, K. and Tounsi, A. (2012), "The thermal effect on vibration of single walled carbon nanotubes using nonlocal Timoshenko beam theory", J. Comput. Mater. Sci., 51(1), 252-260. https://doi.org/10.1016/j.commatsci.2011.07.021.
  86. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., AddaBedia, E.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using the nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.
  87. Zidour, M., Daouadji, T.H., Benrahou, K.H., Tounsi, A., Bedia, E.A.A. and Hadji, L. (2014), "Buckling analysis of chiral single-walled carbon nanotubes by using nonlocal Timoshenko beam theory", Mech. Compos. Mater., 50(1), 95-104. https://doi.org/10.1007/s11029-014-9396-0.

Cited by

  1. Investigation of Mechanical Numerical Simulation and Expansion Experiment of Expandable Liner Hanger in Oil and Gas Completion vol.2020, 2020, https://doi.org/10.1155/2020/9375835
  2. Numerical study for nonlocal vibration of orthotropic SWCNTs based on Kelvin's model vol.9, pp.3, 2020, https://doi.org/10.12989/acc.2020.9.3.301
  3. Non-local orthotropic elastic shell model for vibration analysis of protein microtubules vol.25, pp.3, 2020, https://doi.org/10.12989/cac.2020.25.3.245
  4. Effect of the rotation on the thermal stress wave propagation in non-homogeneous viscoelastic body vol.21, pp.1, 2020, https://doi.org/10.12989/gae.2020.21.1.001
  5. Eringen's nonlocal model sandwich with Kelvin's theory for vibration of DWCNT vol.25, pp.4, 2020, https://doi.org/10.12989/cac.2020.25.4.343
  6. Multiphysical theoretical prediction and experimental verification of vibroacoustic responses of fruit fiber‐reinforced polymeric composite vol.41, pp.11, 2020, https://doi.org/10.1002/pc.25724
  7. A mechanical model to investigate Aedesaegypti mosquito bite using new techniques and its applications vol.11, pp.6, 2020, https://doi.org/10.12989/mwt.2020.11.6.399
  8. Finite Element Modeling of Stress Behavior of FGM Nanoplates vol.2021, 2020, https://doi.org/10.1155/2021/9983024
  9. Thermal frequency analysis of FG sandwich structure under variable temperature loading vol.77, pp.1, 2020, https://doi.org/10.12989/sem.2021.77.1.057
  10. Size dependent vibration of embedded functionally graded nanoplate in hygrothermal environment by Rayleigh-Ritz method vol.10, pp.1, 2020, https://doi.org/10.12989/anr.2021.10.1.025
  11. On thermally induced instability of FG-CNTRC cylindrical panels vol.10, pp.1, 2021, https://doi.org/10.12989/anr.2021.10.1.043
  12. Stoneley wave propagation in nonlocal isotropic magneto-thermoelastic solid with multi-dual-phase lag heat transfer vol.38, pp.2, 2020, https://doi.org/10.12989/scs.2021.38.2.141
  13. Study and analysis of the free vibration for FGM microbeam containing various distribution shape of porosity vol.77, pp.2, 2020, https://doi.org/10.12989/sem.2021.77.2.217
  14. Geometrically nonlinear thermo-mechanical analysis of graphene-reinforced moving polymer nanoplates vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.151
  15. Frequency characteristics and sensitivity analysis of a size-dependent laminated nanoshell vol.10, pp.2, 2020, https://doi.org/10.12989/anr.2021.10.2.175
  16. Elastic wave phenomenon of nanobeams including thickness stretching effect vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.271
  17. Nonlocal free vibration analysis of porous FG nanobeams using hyperbolic shear deformation beam theory vol.10, pp.3, 2020, https://doi.org/10.12989/anr.2021.10.3.281
  18. Computer simulation for stability analysis of the viscoelastic annular plate with reinforced concrete face sheets vol.27, pp.4, 2020, https://doi.org/10.12989/cac.2021.27.4.369