DOI QR코드

DOI QR Code

Non-Linear dynamic pulse buckling of laminated composite curved panels

  • Keshav, Vasanth (Department of Civil Engineering, BITS Pilani, Pilani Campus) ;
  • Patel, Shuvendu N. (Department of Civil Engineering, BITS Pilani, Pilani Campus)
  • Received : 2018.07.24
  • Accepted : 2019.10.05
  • Published : 2020.01.25

Abstract

In this paper, non-linear dynamic buckling behaviour of laminated composite curved panels subjected to dynamic in-plane axial compressive loads is studied using finite element methods. The work is carried out using the finite element software ABAQUS. The curved panels are modelled with S4R element and the nonlinear dynamic equilibrium equations are solved using the ABAQUS/Explicit algorithm. The effect of aspect ratio, radius of curvature and thickness are studied. The importance of orientation of plies in the direction of loading is also reiterated in this study. Vol'mir's criterion is used to calculate the dynamic buckling loads. The panels are subjected to rectangular pulse load of various amplitude and durations and the responses are observed. For particular loading amplitude, a critical value of loading duration is observed beyond which the variation of dynamic buckling load is insignificant. It is also observed that, the value of dynamic bucking load reduces as the loading duration is increased though the reduction is not much after a particular loading duration.

Keywords

Acknowledgement

Supported by : Council of Scientific and Industrial Research (CSIR)

References

  1. Alijani, F. and Amabili, M. (2014), "Non-linear vibrations of shells: A literature review from 2003 to 2013", J. Non Linear Mech., 58, 233-257. https://doi.org/10.1016/j.ijnonlinmec.2013.09.012.
  2. Ari-Gur, J. and Simonetta, S. R. (1997), "Dynamic pulse buckling of rectangular composite plates", Compos. Part B Eng., 28(3), 301-308. https://doi.org/10.1016/S1359-8368(96)00028-5.
  3. Azarboni, H. R., Darvizeh, M., Darvizeh, A. and Ansari, R. (2015), "Nonlinear dynamic buckling of imperfect rectangular plates with different boundary conditions subjected to various pulse functions using the Galerkin method", Thin Wall Struct., 94, 577-584. https://doi.org/10.1016/j.tws.2015.04.002.
  4. Bisagni, C. (1999), "Experimental buckling of thin composite cylinders in compression" AIAA J., 37(2), 276-278. https://doi.org/10.2514/2.704.
  5. Bisagni, C. (2005), "Dynamic buckling of fiber composite shells under impulsive axial compression", Thin Wall Struct., 43(3), 499-514. https://doi.org/10.1016/j.tws.2004.07.012.
  6. Chamis, C. C. (1969), "Buckling of anisotropic composite plates", J. Struct. Division, 95(10), 2119-2140. https://doi.org/10.1061/JSDEAG.0002375
  7. Chattopadhyay, A. and Radu, A. G. (2000), "Dynamic instability of composite laminates using a higher order theory", Comput. Struct., 77(5), 453-460. https://doi.org/10.1016/S0045-7949(00)00005-5.
  8. Darabi, M. and Ganesan, R. (2017), "Non-linear vibration and dynamic instability of internally-thickness-tapered composite plates under parametric excitation", Compos. Struct., 176, 82-104. https://doi.org/10.1016/j.compstruct.2017.04.059
  9. Dey, T. and Ramachandra, L. S. (2014), "Static and dynamic instability analysis of composite cylindrical shell panels subjected to partial edge loading", J. Non Linear Mech., 64, 46-56. https://doi.org/10.1016/j.ijnonlinmec.2014.03.014
  10. Di Sciuva, M. and Carrera, E. (1990), "Static buckling of moderately thick, anisotropic, laminated and sandwich cylindrical shell panels", AIAA J., 28(10), 1782-1793. https://doi.org/10.2514/3.10474.
  11. Gao, Y. and Fatt, M. S. H. (2012), "Dynamic pulse buckling of single curvature composite shells under external blast", Thin Wall Struct., 52, 149-157. https://doi.org/10.1016/j.tws.2011.12.010.
  12. Gerard, G. and Becker, H. (1957), "Handbook of structural stability: Part I- Buckling of Flat Plates", Technical Note 3781, National Advisory Committee on Aeronautics.
  13. Gilat, R. and Aboudi, J. (1995), "Dynamic buckling of nonlinear resin matrix composite structures", Compos. Struct., 32(1-4), 81-88. https://doi.org/10.1016/0263-8223(95)00021-6.
  14. Hilburger, M.W., Britt, V.O. and Nemeth, M.P. (2001), "Buckling behavior of compression-loaded quasi-isotropic curved panels with a circular cutout", J. Solids Struct., 38(9), 1495-1522. https://doi.org/10.1016/S0020-7683(00)00114-1.
  15. Hutchinson, J. W., Muggeridge, D. B. and Tennyson, R. C. (1971), "Effect of a local axisymmetric imperfection on the buckling behavior of a circular cylindrical shell under axial compression", AIAA J., 9(1), 48-52. https://doi.org/10.2514/3.6123.
  16. Jansen, E. L. (2005), "Dynamic stability problems of anisotropic cylindrical shells via a simplified analysis", Nonlinear Dynam., 39(4), 349-367. https://doi.org/10.1007/s11071-005-4343-1.
  17. Jaunky, N. and Knight Jr, N. F. (1999), "An assessment of shell theories for buckling of circular cylindrical laminated composite panels loaded in axial compression", J. Solids Struct., 36(25), 3799-3820. https://doi.org/10.1016/S0020-7683(98)00177-2.
  18. Karman, T. V. (1941), "The buckling of thin cylindrical shells under axial compression", J. Aeronautic. Sci., 8(8), 303-312. https://doi.org/10.2514/8.10722.
  19. Kidane, S., Li, G., Helms, J., Pang, S. S. and Woldesenbet, E. (2003), "Buckling load analysis of grid stiffened composite cylinders", Compos. Part B Eng., 34(1), 1-9. https://doi.org/10.1016/S1359-8368(02)00074-4.
  20. Kiran, M. C. and Kattiman, S. C. (2017), "Buckling characteristics and static studies of multilayered magneto-electro-elastic plate", Structural Eng. Mech., 64(6), 751-763. https://doi.org/10.12989/sem.2017.64.6.751.
  21. Kowal-Michalska, K. and Mania, R. J. (2008), "Some aspects of dynamic buckling of plates under in-plane pulse loading", Mech. Mech. Eng., 12(2), 135-146.
  22. Kubiak, T. (2005), "Dynamic buckling of thin-walled composite plates with varying widthwise material properties", J. Solids Struct., 42(20), 5555-5567. https://doi.org/10.1016/j.ijsolstr.2005.02.043.
  23. Kubiak, T. (2013), Static and Dynamic Buckling of Thin-Walled Plate Structures, Springer, Switzerland.
  24. Kumar, R., Kumar, A. and Panda, S. K. (2015), "Parametric resonance of composite skew plate under non-uniform in-plane loading", Struct. Eng. Mech., 55(2), 435-459. https://doi.org/10.12989/sem.2015.55.2.435.
  25. Leissa, A. W. (1985), "Buckling of laminated composite plates and shell panels", No. OSURF-762513/713464, Ohio State University Research Foundation, Columbus.
  26. Leissa, A. W. and Martin, A. F. (1990), "Vibration and buckling of rectangular composite plates with variable fiber spacing", Compos. Struct., 14(4), 339-357. https://doi.org/10.1016/0263-8223(90)90014-6.
  27. Moon, C. J., Kim, I. H., Choi, B. H., Kweon, J. H. and Choi, J. H. (2010), "Buckling of filament-wound composite cylinders subjected to hydrostatic pressure for underwater vehicle applications", Compos. Struct., 92(9), 2241-2251. https://doi.org/10.1016/j.compstruct.2009.08.005.
  28. Moorthy, J., Reddy, J. N. and Plaut, R. H. (1990), "Parametric instability of laminated composite plates with transverse shear deformation", J. Solids Struct., 26(7), 801-811. https://doi.org/10.1016/0020-7683(90)90008-J.
  29. Ovesy, H. R., Totounferoush, A. and Ghannadpour, S. A. M. (2015), "Dynamic buckling analysis of delaminated composite plates using semi-analytical finite strip method", J. Sound Vib., 343, 131-143. https://doi.org/10.1016/j.jsv.2015.01.003.
  30. Patel, S.N., Datta, P.K. and Sheikh, A.H. (2003), "Vibration and buckling of composite curved panels using a degenerated shell element", National Conference on Emerging Trends in Structural Mechanics and Composites (ETSMC-2003), NIT Rourkela, November.
  31. Patel, S. N., Datta, P. K. and Sheikh, A. H. (2006), "Dynamic instability analysis of laminated composite stiffened shell panels subjected to in-plane harmonic edge loading", Struct. Eng. Mech., 22(4), 483-510. https://doi.org/10.12989/sem.2006.22.4.483.
  32. Patel, S. N., Chiara Bisagni and P. K. Datta. (2011), "Dynamic buckling analysis of a composite stiffened cylindrical shell", Struct. Eng. Mech. 37(5), 18 509-527. https://doi.org/10.12989/sem.2011.37.5.509.
  33. Petry, D. and Fahlbusch, G. (2000), "Dynamic buckling of thin isotropic plates subjected to in-plane impact", Thin Wall Struct., 38(3), 267-283. https://doi.org/10.1016/S0263-8231(00)00037-9.
  34. Priyadarsini, R. S., Kalyanaraman, V. and Srinivasan, S. M. (2012), "Numerical and experimental study of buckling of advanced fiber composite cylinders under axial compression", J. Struct. Stability Dynam., 12(04), 1250028. https://doi.org/10.1142/S0219455412500289.
  35. Qatu, M. S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells", Appl. Mech. Rev., 55(4), 325-350. https://doi.org/10.1115/1.1483079.
  36. Qatu, M. S. (2002), "Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells", Appl. Mech. Rev., 55(5), 415-434. https://doi.org/10.1115/1.1483078.
  37. Rajasekaran, S. (2017), "Analysis of non-homogeneous orthotropic plates using EDQM", Struct. Eng. Mech., 61(2), 295-316. https://doi.org/10.12989/sem.2017.61.2.295.
  38. Ramachandra, L. S. and Panda, S. K. (2012), "Dynamic instability of composite plates subjected to non-uniform in-plane loads", J. Sound Vib., 331(1), 53-65. https://doi.org/10.1016/j.jsv.2011.08.010.
  39. Sahu, S. K. and Datta, P. K. (2001), "Parametric instability of doubly curved panels subjected to non-uniform harmonic loading", J. Sound Vib., 240(1), 117-129. https://doi.org/10.1006/jsvi.2000.3187.
  40. Shariyat, M. (2011), "A nonlinear double-superposition global- local theory for dynamic buckling of imperfect viscoelastic composite/sandwich plates: A hierarchical constitutive model", Compos. Struct., 93(7), 1890-1899. https://doi.org/10.1016/j.compstruct.2011.02.005.
  41. Topal, U. (2017), "Buckling load optimization of laminated composite stepped columns", Struct. Eng. Mech., 62(1), 107-111. https://doi.org/10.12989/sem.2017.62.1.107.
  42. Vol'mir, A. S. (1974), The Nonlinear Dynam. of plates and shells. (No. FTD-HC-23-851-23 74) Foreign Technology Division, Wright-Patterson. AFB, Ohio.
  43. Wang, H., Chen, C. S. and Fung, C. P. (2013), "Hygrothermal effects on dynamic instability of a laminated plate under an arbitrary pulsating load", Struct. Eng. Mech., 48(1), 103-124. https://doi.org/10.12989/sem.2013.48.1.103.
  44. Yang, B. and Wang, D. Y. (2016), "Dynamic buckling of stiffened plates with elastically restrained edges under in-plane impact loading", Thin Wall Struct., 107, 427-442. https://doi.org/10.1016/j.tws.2016.06.019.
  45. Zerin, Z., Basoglu, M. F. and Turan, F. (2017), "Curvilinear free-edge form effect on stability of perforated laminated composite plates", Struct. Eng. Mech., 61(2), 255-266. https://doi.org/10.12989/sem.2017.61.2.255.
  46. Zhang, Y. and Matthews, F. L. (1983), "Initial buckling of curved panels of generally layered composite materials", Compos. Struct., 1(1), 3-30. https://doi.org/10.1016/0263-8223(83)90014-4.