DOI QR코드

DOI QR Code

GS-MARS method for predicting the ultimate load-carrying capacity of rectangular CFST columns under eccentric loading

  • Luat, Nguyen-Vu (Department of Architectural Engineering, Sejong University) ;
  • Lee, Jaehong (Department of Architectural Engineering, Sejong University) ;
  • Lee, Do Hyung (Department of Civil Environmental and Railroad Engineering, Paichai University) ;
  • Lee, Kihak (Department of Architectural Engineering, Sejong University)
  • Received : 2019.09.23
  • Accepted : 2019.12.20
  • Published : 2020.01.25

Abstract

This study presents applications of the multivariate adaptive regression splines (MARS) method for predicting the ultimate loading carrying capacity (Nu) of rectangular concrete-filled steel tubular (CFST) columns subjected to eccentric loading. A database containing 141 experimental data was collected from available literature to develop the MARS model with a total of seven variables that covered various geometrical and material properties including the width of rectangular steel tube (B), the depth of rectangular steel tube (H), the wall thickness of steel tube (t), the length of column (L), cylinder compressive strength of concrete (f'c), yield strength of steel (fy), and the load eccentricity (e). The proposed model is a combination of the MARS algorithm and the grid search cross-validation technique (abbreviated here as GS-MARS) in order to determine MARS' parameters. A new explicit formulation was derived from MARS for the mentioned input variables. The GS-MARS estimation accuracy was compared with four available mathematical methods presented in the current design codes, including AISC, ACI-318, AS, and Eurocode 4. The results in terms of criteria indices indicated that the MARS model was much better than the available formulae.

Keywords

Acknowledgement

Supported by : Ministry of Land, Infrastructure and Transport of Korean Government

References

  1. American Concrete Institute (ACI) (2011), Building Code Requirements for Structural Concrete and Commentary, ACI 318-11, Farmington Hills, MI, USA.
  2. American Concrete Institute (ACI) (2014), Building Code Requirements for Structural Concrete and Commentary, ACI 318-14, Farmington Hills, MI, USA.
  3. American Institute of Steel Construction (ANSI/AISC 360-10) (2010), Specification for Structural Steel Buildings, An American National Standard.
  4. American Institute of Steel Construction (ANSI/AISC 360-10) (2016), Specification for Structural Steel Buildings, An American National Standard.
  5. Ahmadi, M., Naderpour, H. and Kheyroddin, A. (2014), "Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load", Arch. Civil Mech. Eng., 14(3), 510-517. https://doi.org/10.1016/j.acme.2014.01.006.
  6. Aslani, F., Uy, B., Tao, Z. and Mashiri, F. (2015), "Predicting the axial load capacity of high-strength concrete filled steel tubular columns", Steel Compos. Struct., 19(4), 967-993. https://doi.org/10.12989/scs.2015.19.4.967.
  7. Bahrami, A., Hamidon, W. and Badaruzzaman, W. (2012), "Structural behaviour of tapered concrete-filled steel composite (TCFSC) columns subjected to eccentric loading", Comput. Concrete, 9(6), 403-426. https://doi.org/10.12989/cac.2012.9.6.403.
  8. Bradford, M.A., Loh, H.Y. and Uy, B. (2002), "Slenderness limits for filled circular steel tubes", J. Constr. Steel Res., 58(2), 243-252. https://doi.org/10.1016/S0143-974X(01)00043-8.
  9. Bridge, R. (1976), "Concrete-filled steel tubular columns", Institution of Engineers, Australia.
  10. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201.
  11. Cheng, M.Y. and Cao, M.T. (2014), "Evolutionary multivariate adaptive regression splines for estimating shear strength in reinforced-concrete deep beams", Eng. Appl. Artif. Intell., 28, 86-96. https://doi.org/10.1016/j.engappai.2013.11.001.
  12. Cheng, M.Y. and Cao, M.T. (2016), "Estimating strength of rubberized concrete using evolutionary multivariate adaptive regression splines", J. Civil Eng. Manage., 22(5), 711-720. https://doi.org/10.3846/13923730.2014.897989.
  13. Craven, P. and Wahba, G. (1978), "Smoothing noisy data with spline functions", Numer. Math., 31(4), 377-403. https://doi.org/https://doi.org/10.1007/BF01404567.
  14. Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, 21(4), 407-417. https://doi.org/10.12989/cac.2018.21.4.463.
  15. Friedman, J.H. (1991), "Multivariate adaptive regression splines", Ann. Statics, 19(1), 1-67.
  16. Fujimoto, T., Mukai, A., Nishiyama, I. and Sakino, K. (2004), "Behavior of eccentrically loaded concrete-filled steel tubular columns", J. Struct. Eng., 130(2), 203-212. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(203).
  17. Ghasemian, M. and Schmidt, L.C. (1999), "Curved Circular Hollow Section (CHS) Steel Struts Infilled with Higher-Strength Concrete", Struct. J., 96(2), 275-281. https://doi.org/10.14359/619.
  18. Guneyisi, E.M., Gultekin, A. and Mermerdas, K. (2016), "Ultimate capacity prediction of axially loaded CFST short columns", Int. J. Steel Struct., 16(1), 99-114. https://doi.org/10.1007/s13296-016-3009-9.
  19. Guo, L.H., Zhang, S.M. and Tian, H. (2004), "High strength concrete-filled RHS steel tubes subjected to eccentric loading", Harbin Gongye Daxue Xuebao/J. Harbin Inst. Technol., 36(3), 297-301.
  20. Gupta, P.K., Verma, V.K., Khaudhair, Z.A. and Singh, H. (2015), "Effect of tube area on the behavior of concrete filled tubular columns", Comput. Concrete, 15(2), 141-166. https://doi.org/10.12989/cac.2015.15.2.141.
  21. Han, B., Wang, Y., Wang, Q. and Zhang, D. (2013), "Creep analysis of CFT columns subjected to eccentric compression loads", Comput. Concrete, 11(4), 291-304. https://doi.org/10.12989/cac.2013.11.4.291.
  22. Han, L.H.H., Li, W. and Bjorhovde, R. (2014), "Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members", J. Constr. Steel Res., 100, 211-228. https://doi.org/10.1016/j.jcsr.2014.04.016.
  23. Han, L.H. and Yao, G.H. (2003), "Influence of concrete compaction on the strength of concrete-filled steel RHS columns", J. Constr. Steel Res., 59(6), 751-767. https://doi.org/10.1016/S0143-974X(02)00076-7.
  24. Ipek, S. and Guneyisi, E.M. (2019), "Ultimate axial strength of concrete-filled double skin steel tubular column sections", Adv. Civil Eng., 2019. https://doi.org/10.1155/2019/6493037.
  25. Knowles, R. and Park, R. (1970), "Axial load design for concrete filled steel tubes", J. Struct. Div., 96(12), 2125-2153. https://doi.org/10.1061/JSDEAG.0002720
  26. Knowles, R. and Park, R. (1969), "Strength of concrete filled steel tubular columns", J. Strucural Div., 95(12), 2565-2587. https://doi.org/10.1061/JSDEAG.0002425
  27. Kuranovas, A., Goode, D., Kvedaras, A.K. and Zhong, S. (2009), "Load-bearing capacity of concrete-filled steel columns", J. Civil Eng. Manage., 15(1), 21-33. https://doi.org/10.3846/1392-3730.2009.15.21-33.
  28. Lee, S.H., Uy, B., Kim, S.H., Choi, Y.H. and Choi, S.M. (2011), "Behavior of high-strength circular concrete-filled steel tubular (CFST) column under eccentric loading", J. Constr. Steel Res., 67(1), 1-13. https://doi.org/10.1016/j.jcsr.2010.07.003.
  29. Liu, D. (2004), "Behaviour of high strength rectangular concrete-filled steel hollow section columns under eccentric loading", Thin Wall. Struct., 42(12), 1631-1644. https://doi.org/10.1016/j.tws.2004.06.002.
  30. Liu, J., Wang, X., Qi, H. and Zhang, S. (2015), "Behavior and strength of circular tubed steel- reinforced-concrete short columns under eccentric loading", Adv. Struct. Eng., 18(10), 1587-1595. https://doi.org/10.1260/1369-4332.18.10.1587.
  31. Lu, Z.H. and Zhao, Y.G. (2010), "Suggested empirical models for the axial capacity of circular CFT stub columns", J. Constr. Steel Res., 66(6), 850-862. https://doi.org/10.1016/j.jcsr.2009.12.014.
  32. Mursi, M. (2007), "The behaviour and design of thin walled concrete filled steel box columns", Ph. D. Thesis, School of Civil and Environmental Engineering, The University of New South Wales.
  33. Nakahara, H. and Sakino, K. (2000), "Practical analysis for high-strength CFT columns under eccentric compression", Composite and Hybrid Structures : Proceedings of the 6th ASCCS International Conference on Steel-Concrete Composite Structures, Univ. of Southern California, Los Angeles, CA.
  34. Neogi, P., San, H. and Chapman, J. (1969), "Concrete filled tubular steel columns uncer eccentric loading", J. Struct. Eng., 47(5), 187-195.
  35. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., ... & Vanderplas, J. (2011), "Scikit-learn: Machine learning in python", J. Mach. Learn. Res., 12, 2825-2830.
  36. Portoles, J.M., Romero, M.L., Bonet, J.L. and Filippou, F.C. (2011), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017.
  37. Qi, C. and Tang, X. (2018), "A hybrid ensemble method for improved prediction of slope stability", Int. J. Numer. Anal. Meth. Geomech., 42(15), 1823-1839. https://doi.org/10.1002/nag.2834.
  38. Rangan, B.V. and Joyce, M. (1992), "Strength of eccentrically loaded slender steel tubular columns filled with high-strength concrete", ACI Struct. J., 89(6), 676-681.
  39. Ren, Q., Li, M., Zhang, M., Shen, Y. and Si, W. (2019), "Prediction of ultimate axial capacity of square concrete-filled steel tubular short columns using a hybrid intelligent algorithm", Appl. Sci., 9(14). https://doi.org/10.3390/app9142802.
  40. Saadoon, A.S., Nasser, K.Z. and Mohamed, I.Q. (2012), "A neural network model to predict ultimate strength of rectangular concrete filled steel tube beam-columns", Eng. Technol. J., 30(19), 3328-3340.
  41. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125).
  42. Shakir-Khalil, H. and Al-Rawdan, A. (1996), "Experimental behaviour and numerical modelling of concrete-filled rectangular hollow section tubular columns", Proceedings of an Engineering Foundation Conference, Irsee, Germany, 222-235.
  43. Shakir-Khalil, H. and Zeghiche, J. (1989), "Experimental behaviour of concrete-filled rolled rectangular hollow-section columns", Struct. Eng., 67(19), 346-353.
  44. Tao, Z., Uy, B., Han, L.H. and He, S.H. (2008), "Design of concrete-filled steel tubular members according to the Australian Standard AS 5100 model and calibration", Aust. J. Struct. Eng., 8(3), 197-214. https://doi.org/10.1080/13287982.2008.11464998.
  45. Tomii, M., Yoshimura, K. and Morishita, Y. (1977), "Experimental studies on concrete filled steel tubuar stub columns under concentric loading", International Colloquium on Stability of Structures Under Static and Dynamic Loads. Washington, D.C, United States.
  46. Uy, B. and Das, S. (1997), "Behaviour and design of concrete filled fabricated steel box columns", Proceedings of 15th Australasian Conference on the Mechanics of Structures and Materials, Melbourne, Australia.
  47. Uy, B., Tao, Z. and Han, L.H. (2011), "Behaviour of short and slender concrete-filled stainless steel tubular columns", J. Constr. Steel Res., 67(3), 360-378. https://doi.org/10.1016/j.jcsr.2010.10.004.
  48. Vrcelj, Z. and Uy, B. (2002), "Behaviour and design of steel square hollow sections filled with high strength concrete", Aust. J. Struct., 3(3), 153-170. https://doi.org/10.1080/13287982.2002.11464902.
  49. Wei, Z. and Han, L. (2000), "Research on the bearing capacity of early-strength concrete filled square steel tube", Composite and Hybrid Structures: Proceedings of the 6th ASCCS International Conference on Steel-Concrete Composite Structures, Univ. of Southern California, Los Angeles, CA.
  50. Zeghiche, J. and Chaoui, K. (2005), "An experimental behaviour of concrete-filled steel tubular columns", J. Constr. Steel Res., 61(1), 53-66. https://doi.org/10.1016/j.jcsr.2004.06.006.
  51. Zhang, S. and Guo, L. (2007), "Behaviour of high strength concrete-filled slender RHS steel tubes", Adv. Struct. Eng., 10(4), 337-351. https://doi.org/10.1260/136943307783239381.
  52. Zhang, W. and Goh, A.T.C. (2015), "Nonlinear structural modeling using multivariate adaptive regression splines", Comput. Concrete 16(4), 569-585. https://doi.org/10.12989/cac.2015.16.4.569.
  53. Zhu, W.C., Ling, L., Tang, C.A., Kang, Y.M. and Xie, L.M. (2012), "The 3D-numerical simulation on failure process of concrete-filled tubular (CFT) stub columns under uniaxial compression", Comput. Concrete, 9(4), 257-273. https://doi.org/10.12989/cac.2012.9.4.257

Cited by

  1. Seismic Fragility Assessment of Columns in a Piloti-Type Building Retrofitted with Additional Shear Walls vol.12, pp.16, 2020, https://doi.org/10.3390/su12166530
  2. Ultimate axial capacity prediction of CCFST columns using hybrid intelligence models - a new approach vol.40, pp.3, 2021, https://doi.org/10.12989/scs.2021.40.3.461
  3. Flexural Strength of Internally Stiffened Tubular Steel Beam Filled with Recycled Concrete Materials vol.14, pp.21, 2021, https://doi.org/10.3390/ma14216334