DOI QR코드

DOI QR Code

Application on the CFBC Fly Ash as a Stimulant to Improve the Early Strength of Hydration Portland Cement

슬래그시멘트 초기강도 증진을 위한 자극제로서 CFBC Fly ash의 활용연구

  • Received : 2019.11.05
  • Accepted : 2019.12.20
  • Published : 2020.03.30

Abstract

As the circulating fluidized bed combustor(CFBC) boilers system to generate electric power increase in order to reduce environmental pollution, a lot of CFBC fly ashes(CFFA) are produced. CFFA has limited use in concrete because it contains free CaO, which can cause cement expansion and rapid initial hydration. In this study, the microstructure and the initial development of compressive strength characteristics were experimentally analyzed to be used as a stimulant to replace natural gypsum by mixing with CFFA and phosphate gypsum to enhance the initial strength of portland blast furnace slag cement. The recycled gypsum was used as flue-gas desulfurization gypsum and phosphate gypsum. Experimental results show that the initial strength development is relatively lower when CFFA and dihydrate gypsum are mixed, but the strength improvement effect of the mixture with CFFA and anhydrous gypsum as an anhydritedII typed crystalized gypsum is similar to that of natural gypsum. As a result, it w as analyzed to have high possibility of use for stimulant of portland blast furnace slag cement.

환경오염 저감을 위해 순환유동층 보일러를 활용한 발전이 증가함에 따라 CFBC 플라이애시가 많이 생산되고 있다. CFBC 플라이애시내는 수화반응 중 시멘트의 팽창과 급격한 초기응결을 발생시킬 수 있는 free CaO를 포함하고 있기 때문에 콘크리트에서의 사용이 제한적이다. 본 연구에서는 고로슬래그시멘트의 초기강도 증진을 위해 CFBC 플라이애시와 인산석고와 같이 혼합함으로서 천연석고를 대체하는 자극제로 활용하고자 하기 위하여 미세구조와 초기강도 특성을 실험적으로 분석하였다. 인산석고는 배면탈황석고와 인산중화석고를 사용하였으며, 이수상태와 무수상태로 각각 혼합하여 실험하였다. 실험결과 CFFA와 dihydrate 형태의 이수석고를 혼합하는 경우에는 상대적으로 초기강도 발현이 낮아지나, CFFA와 anhydriteII 결정형태인 무수인산석고를 혼합한 배합의 강도 증진효과가 천연석고를 사용한 경우와 유사하여 혼합시멘트로 활용 가능성이 높은 것으로 분석되었다.

Keywords

References

  1. Fu, X., Li, Q., Zhai, J., Sheng, G., Li, F. (2008). The physical- chemical characterization of mechanically-treated CFBC fly ash, Cement and Concrete Composites, 30(3), 220-226. https://doi.org/10.1016/j.cemconcomp.2007.08.006
  2. Hester, D., Mcnally, C., Richardson, M.G.,(2005). Study of influence of slag alkali level on the alkali-silica reactivity of slag concrete, Construction and Building Materials, 19(9), 661-665. https://doi.org/10.1016/j.conbuildmat.2005.02.016
  3. Jeong, J.Y., Jang, S.Y., Choi, Y.C., Jung, S.H., Kim, S.I. (2015). Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes, Journal of the Korea Concrete Institute, 27(2), 115-125 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.2.115
  4. Kang, Y.H., Jung, S.H. (2017). Material properties of circulating fluidized bed combustion fly ash and utilization of non-sintered cement field, Magazine of RCR, 12(2), 26-32 [in Korean]. https://doi.org/10.14190/MRCR.2017.12.2.026
  5. Kim, J.H., Park, B.S., Jung, S.H., Choi, Y.C. (2016). Effect of properties of fly-ashes on the characteristics of fly-ash mortars, Journal of the Korean Recycled Construction Resources Institute, 4(4), 439-445 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.4.439
  6. Kim, T.H., Lee, S.H.,Lee, Y., Shin, J.H., Lee, S.S. (2016). Mechanical properties of non-cement matrix utilizing the circulating fluidized bed combustion boiler fly ash and dyeing sludge carbide, Journal of the Korean Recycled Construction Resources Institute, 4(4), 425-430 [in Korean]. https://doi.org/10.14190/JRCR.2016.4.4.425
  7. Lee, S.H. (2017). Revised provision of KS L 5405 "Fly Ash" for CFBC fly ash to applying concrete, Magazine of RCR, 12(2), 20-25 [in Korean]. https://doi.org/10.14190/MRCR.2017.12.2.020
  8. Lee, S.H., Lee, G.H., Yoo, D.W., Ha, J.H., Cho, Y.G. (2015). Hydration and insulation characteristics of a ground granulated blast furnace slag based non-sintered cement using circulating fluidized bed combustion ash as a activator, Journal of the Korea Concrete Institute, 27(3), 245-252 [in Korean]. https://doi.org/10.4334/JKCI.2015.27.3.245
  9. Leng, F., Feng, N., Lu, X., (2000). An experiment study on the properties of resistance to diffusion of chloride ions of fly ash and blast furnace slag concrete, Cement and Concrete Research, 30, 989-992. https://doi.org/10.1016/S0008-8846(00)00250-7
  10. Oh, H.S., Park, J.T., Lee, W.H. (2010). A fundamental study on the material characteristic of micro-admixture for cement using phosphogypsum and kaolin, Journal of the Korea Institute for Structural Maintenance and Inspection, 14(3), 144-151 [in Korean]. https://doi.org/10.11112/jksmi.2010.14.3.144
  11. Park, J. Oh, H. (2018). A study on the pozzolan reactivity and mechanical characteristic of blended portland cements using CFBC fly ash, Journal of the Korean Recycled Construction Resources Institute, 6(3), 207-213 [in Korean]. https://doi.org/10.14190/JRCR.2018.6.3.207
  12. Park, J.T., Oh, H.S. (2009). Experimental study on the material characteristics of slag cement with various phosphogypsum materials, Journal of the Korea Concrete Institute, 21(6), 729-735 [in Korean]. https://doi.org/10.4334/JKCI.2009.21.6.729
  13. Shen, Y., Qian, J., Zhang, Z. (2013). Investigations of Anhydrite in CFBC Fly Ash as Cement Retarders, Construction and Building Materials, 40, 672-678. https://doi.org/10.1016/j.conbuildmat.2012.11.056
  14. Sheng, G., Li, Q., Zhai, J. (2012). Investigation on the Hydration of CFBC Fly Ash, Fuel, 98, 61-66. https://doi.org/10.1016/j.fuel.2012.02.008